1. Title:
Milton Ditch Piping

2. Proposal Preparer(s):
Brian Wolcott

3. Project Status: Identify whether the proposed project is a past, ongoing or new project and briefly explain the status of the project, including the requested role of the Flow Study in further consideration of the project. If past project, some of the questions below may not be applicable.

- NEW PROJECT
- ON-GOING PROJECT
- PAST PROJECT

4. General Description of Proposal: Identify the category(s) and briefly explain the proposed project (e.g. location, infrastructure requirements, maintenance requirements, connection to other new, ongoing or past projects, other stakeholders, various sizing or phasing, etc.).

- Water Conservation & Infrastructure
- Aquifer Recharge & Aquifer Storage and Recovery
- Surface – Groundwater Source Switch
- Surface Water Storage
- Pump Exchange
- Water Right Transactions
- Point of Diversion Transfers
- Other

The 2 mile Milton Ditch abandonment and piping project in the Walla Walla River Irrigation District was piped starting in 2003 and completed in 2005. The project consolidated the Milton ditch diversion downstream 1.5 miles to the Little Walla Walla diversion, leaving approximately 7 CFS in that reach of the main river channel. It eliminated the need for a gravel push-up dam, thereby allowing for improved fish passage (including ESA-listed bull trout and steelhead) in the Walla Walla River and into the Couse Creek tributary. The project improved irrigation delivery efficiency and operation by shortening and piping the leaky Milton ditch system. The project improved water quality, temperature, and ESA issues. OWEB funding $120,000, NRCS $100,000, BPA $1,346,000, ODFW $75,000, and WWRID (cash and in-kind totaled $82,311) Total project cost of design and construction was $1,723,311.

Conserved Water application #73 (Milton Ditch) was approved by WRD as conserving 2.16 CFS March 1- October 31 of each year.

5. Source of Produced Water: Mark all applicable and identify (water right number, shallow or deep basalt aquifer, stream name).

- Existing Water Right
- Groundwater
- Surface Water
- Other
6. Quantity/Timing/Location of Produced Water Instream: Estimate average amount of water, when and where. Can project be considered at various sizes (flow outputs) and/or considered in phases?

a. Acre-feet and/or Cubic-feet-per-second:

2.16 CFS March 1 through October 31 each year. Milton-Freewater (Cemetery Bridge at RM 45.7) also 7 cfs left instream for 1.5 miles and then diverted at Cemetery Bridge Little Walla Walla Diversion.

b. Timeframe(s):

Spring Summer Fall

c. Stream Reach Location(s):

Milton-Freewater/Nursery Bridge

d. UNKNOWN - Need more work (engineering/design/modeling, etc.) to estimate potential instream flow outputs of project. Will results of this work be concluded within one year to inform potential project flow outputs? Describe additional work needed and cost estimate.

No additional work needed.

7. Ability to Protect Produced Water Instream: Briefly explain how the produced water will be quantified, monitored and protected instream or why it is not currently protectable.

□ a. YES - protection under existing regulations expected to WW River mouth or in limited reach?

□ b. NO or X c. UNKNOWN – Results and implementation of flow protection study likely necessary to ensure flow protection.

Protection is unknown. Much of the saved water has senior dates (pre-1900)

8. Cost Estimates: Provide known and estimated costs to develop and implement the project.

a. Project Development and Design:

Project completed. Design cost $131,000.

b. Project Construction:

$1,592,311.

c. Construction cost per AF and/or CFS:

$/CFS and $/acre foot based on total water conserved

$/cfs based on actual portion of water rights transferred to instream through Conserved Water Program

$737,181.02/CFS. This project also increase streamflow by up to 7 cfs in the 1.5 miles upstream from Cemetery bridge, and eliminated a fish passage barrier.

d. Project Annual O&M:

$0 public (WWRID will cover O&M as part of their annual operations)

□ c. UNKNOWN - Need final engineering/design work to estimate costs
<table>
<thead>
<tr>
<th>9. Secured Costs:</th>
<th>Has any funding been secured in the past or currently and what is source?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Other Potential Project Advantages:</th>
<th>In addition to helping address flow targets and basin-wide flow issues (Endangered Species Act, Tribal Water Rights, Clean Water Act, etc.), briefly explain other potential benefits (e.g. reduced O&M costs, restores/mimics ecological processes, cropping flexibility,)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduced O&M costs. Pumping costs reduced for farms lower on the pipeline. Eliminated a fish passage problem at the Milton Ditch Diversion.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Other Potential Project Disadvantages:</th>
<th>Briefly explain potential drawbacks of the proposal (e.g. reduced GW supply - recharge mitigation need, increased O&M costs, legal implications)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduced GW supply requires recharge mitigation from existing and planned sites. Some of the upper Milton Ditch water users have struggled to find an alternate water source.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Estimated Time Frame to Implement Project?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project completed</td>
</tr>
</tbody>
</table>