Water Year 2016
Washington Walla Walla Basin Aquifer Recharge Report

FINAL VERSION

March 2017
Water Year 2016
Washington Walla Walla Basin Aquifer Recharge Report

Written by:

Steven Patten – Senior Environmental Scientist, WWBWC

Walla Walla Basin Watershed Council
2017
TABLE OF CONTENTS
Executive Summary .. 5
Introduction .. 6
Hydrologic Setting ... 6
Aquifer Recharge Sites ... 14
 Locher Road ... 14
 Stiller Pond .. 18
 Last Chance Road ... 19
 WA Mud Creek .. 21
Water Year 2016 Recharge Season Results ... 21
 Locher Road ... 21
 Overview ... 21
 Alluvial Well Responses .. 22
 Water Quality .. 27
 Stiller Pond .. 28
 Overview ... 28
 Alluvial Well Responses .. 30
 Water Quality .. 33
 Soil Quality .. 34
 Last Chance Road .. 35
 Overview ... 35
 Water Quality .. 37
 WA Mud Creek .. 38
 Overview ... 38
Summary and Discussion .. 38
 Water Level and Quantity ... 38
 Water Quality .. 39
References .. 41
Appendix A - Monitoring well hydrographs, including all available data, for the Locher Road and Stiller Pond Aquifer Recharge sites
Appendix B - Water & Soil Quality results for WY2016
 Locher Road – WY2016
 Stiller Pond – WY2016
EXECUTIVE SUMMARY

This report summarizes operations at the two operating aquifer recharge (AR) sites in the Washington portion of the Walla Walla Basin, the Locher Road Aquifer Recharge (Locher Road) site and Stiller Pond Aquifer Recharge (Stiller Pond) site during Water Year 2016 (October 1 2015 to September 30 2016). It also summarizes the two new sites that have not operated yet, Last Chance Road and WA Mud Creek. Data include recharge amounts, supporting groundwater level, groundwater quality, source water quality and soil quality data.

For Water Year 2016, water for the Locher Road site was sourced from the Walla Walla River at Gardena Farms Irrigation District #13’s (GFID) main diversion just upstream of Mojonnier Road. The water was delivered down the Gardena Farms Canal to the Locher Road site. A total of 525.59 acre-feet of water were delivered to the Locher Road site with an additional ~340 acre-feet of recharge water seeping into the ground during conveyance. Water for the Stiller Pond site was sourced from Mill Creek at a private diversion located downstream of Wallula Road. The water was delivered down a pipeline to the Stiller Pond site. A total of 278.06 acre-feet were delivered to the Stiller Pond site. The total amount of water diverted for the two aquifer recharge sites during WY2016 was ~1,143.65 acre-feet (~372.66 million gallons).

Water level and water quality data were collected in accordance to the approved monitoring plan (WWBWC, 2015). Down-gradient groundwater monitoring wells in the vicinity of the recharge sites responded to recharge activities, with groundwater elevations increasing and decreasing as recharge operations began and ended.

Groundwater and surface water quality data collected during aquifer recharge activities do not indicate any potential water quality concerns or that AR activities are degrading groundwater quality. Source water being delivered to the AR sites was of acceptable quality and likely resulted in some observed improvement in groundwater quality over the recharge season.
INTRODUCTION
The Walla Walla Basin Aquifer Recharge program has been in existence since 2004. The first pilot project, the Johnson site, was started in Oregon in the spring of 2004. The program expanded in 2006 with the addition of the Hall-Wentland site just south of the Oregon-Washington state line. The first site in Washington, Locher Road, started in 2007. For a more in-depth background to the aquifer recharge program and the Walla Walla basin's hydrology and geology, please see the Walla Walla Basin Aquifer Recharge Strategic Plan (available at www.wwbwc.org/projects/recharge.html).

H Y D R O L O G I C S E T T I N G
The Walla Walla River (River) system is a bi-state watershed located in northeast Oregon and southeast Washington (Figure 1). The River’s headwaters are located in the Blue Mountains, the crest of which defines the eastern extent of the watershed. The mainstem Walla Walla River and its primary tributaries, Mill Creek and the Touchet River, are the three primary surface channels of the system. They coalesce within the Walla Walla Valley from which the Walla Walla River then flows draining to the Columbia River (Figure 2). This report focuses on the portion of the River system that comprises the Walla Walla River mainstem and Mill Creek, especially where they flow onto and across the area referred to in the balance of this report as the Walla Walla Valley (Figure 4).
Figure 1 - The Walla Walla Watershed in Northeast Oregon and Southeast Washington.
Walla Walla Basin hydrology is largely defined by a distributary river system and an underlying alluvial aquifer system hosted by the sediments overlying basalt. Surface waters entering the Walla Walla Valley effectively change regime from steep sided canyons in the headwaters portion of the watershed to a system of distributary and coalescing streams on the valley floor. With this, shallow groundwater systems see a regime change from localized, saturated valley deposits and confined basalt aquifers controlled by the geologic structure of the Columbia River basalt to the more widespread, thick alluvial aquifer system immediately underlying the valley floor. Depth to basalt beneath the base of the canyon floors in the highland areas upstream of the cities of Walla Walla and Milton-Freewater is typically less than 60 feet, with 30 feet more commonly observed. Beneath the valley floor the top of basalt often is hundreds of feet deep below overlying alluvial sediments.

Groundwater in the Walla Walla Basin occurs in two principal aquifer systems: (1) the unconfined to confined suprabasalt sediment (alluvial) aquifer system and (2) the underlying confined basalt aquifer system (Newcomb, 1965). The basalt aquifer system is regional in character, having limited hydraulic connection to the Walla Walla River, primarily in the canyons of the Blue Mountains. The alluvial aquifer system is the focus of the aquifer recharge program because of its high degree of hydraulic connection with streams on the valley floor.
The alluvial aquifer system, or alluvial aquifer, is found within a sequence of continental clastic sediments overlying the top of basalt (the Mio-Pliocene strata (upper coarse, fine and lower coarse units) and the Quaternary coarse unit). Beneath the Walla Walla Valley floor these sediments, and the alluvial aquifer system is up to 800 feet thick. The majority of the productive portions of the alluvial aquifer system are hosted by the Mio-Pliocene coarse unit although, at least locally, it is hosted in the overlying Quaternary coarse unit. The alluvial aquifer is generally characterized as unconfined, but it does, at least locally, display evidence of confined conditions. Preferential groundwater flow within the gravel aquifer is inferred to largely reflect the distribution of coarse sedimentary strata. General groundwater flow direction can be inferred from the alluvial aquifer water table map (Figure 3).

Figure 3 - Water table contours for the alluvial aquifer system.

The surficial hydrology of the Walla Walla Basin generally is defined by streams confined to steep-walled canyons in the foothills surrounding the valley, a distributary stream system as these streams exit the highlands and flow out onto the valley floor, and then, as the streams flow west, they coalesce into the main Walla Walla River channel. The distributary system formed as streams leaving the highlands entered the valley, went from higher to lower gradient and, as a consequence, deposited coarse sediment loads and formed a series of low angle, coalescing alluvial fans. Upon the alluvial fans in and around the cities of Walla Walla and Milton-Freewater these natural distributary channels still exist in part or in whole to this day. These channels are known today as the East Little Walla Walla River, West Little Walla Walla River, Mud Creek, Yellowhawk Creek, and Garrison Creek. Prior to the development of water resources in the valley, these distributary channels, with other (un-named) channels, served as high water channels that conveyed high
amounts of energy and water across the alluvial fan and away from the mainstem Walla Walla River and Mill Creek. The channels run for several miles, accumulating spring flow, before returning back to the River further down the valley (Figure 4).

Figure 4 - Map of the distributary stream networks of the Walla Walla River and Mill Creek. Historically these stream networks conveyed winter and spring high flows across the valley’s alluvial fans allowing for reduced flood pressure on the mainstem rivers, provided off-channel habitat and provided recharge to the alluvial aquifer system.

In recent decades the management and development of surface water resources has led to installation of flow control devices (irrigation head gates) at the head of the distributary channels. Over time, the management of the distributary network has become less natural. High flows during the winter and spring no longer have free access to the distributary network and the adjacent floodplains. This, along with the development of groundwater resources and the channelization of the valley’s rivers and creeks, has created a declining alluvial aquifer condition.
Generally, the ‘spreading out’ of water across the alluvial fans via distributary channels and adjacent floodplains, coupled with the high hydraulic conductivity of the underlying coarse sediment, function as a primary groundwater recharge mechanism for the entire alluvial aquifer. This seasonally recharged aquifer system in-turn feeds the valley’s springs, spring creeks and larger streams. This cycling of surface water to groundwater recharge, followed by later discharge in springs and as stream base flow creates a delay in discharge of these waters from the valley. Depending on local conditions, this delay can range from days to months, and even years (Jiménez, 2012).

The declining alluvial aquifer, coupled with high connectivity between surface water and alluvial groundwater, has created stream reaches where high seepage loss occurs and significant volumes of surface water drain to the aquifer (Figure 5 & 6). In recent years, the listing of steelhead and bull trout as threatened under the Endangered Species Act and the reintroduction of spring chinook salmon within the watershed, has led to out-of-court agreements between irrigators and Federal fishery agencies. As a result of these agreements, local irrigators are leaving a portion of their legal water rights instream as bypass water year round. For example, per civil agreement, Gardena Farm Irrigation District #13 (GFID) irrigators leave 18 cfs instream (bypass) throughout the year. However, depending on the water-year and a number of other factors, it is not unusual to have a significant portion (40-50%) of the bypass water seep into the underlying aquifer.

Spring fed creeks across the valley, sourced by springs discharging from the alluvial aquifer, have seen declining discharge since the earliest hydrogeologic studies were conducted by Piper (acting on behalf of the US Supreme Court) in the 1930s, Newcomb in the 1960s and Barker and MacNish in the 1970s. Water level declines in the alluvial aquifer since the 1930s and 1940s (Figures 7 & 8) are consistent with the general decline of the related springs (Figure 9). These trends lead one to conclude that there has generally been decreasing groundwater-sourced baseflow over the past several decades contributing to the Walla Walla River and other surface bodies during critical low-flow periods. This loss of groundwater baseflow to streams affects not only the amount of flow in the river but also leads to increased surface water temperature as the cold groundwater derived baseflow is lost.
Figure 5 - Results from the water budget analysis of the Walla Walla River in August 2009. Color indicates a given reach as either gaining or losing. Gains indicate groundwater discharging to the river and losses indicate surface water seeping into the ground (see WWBWC, 2012 for details or www.wwbwc.org/monitoring/monitoring-reports.html).

Figure 6 - Results from the water budget analysis of the Walla Walla River in August 2009. Color indicates a given reach as either gaining or losing. Gains indicate groundwater discharging to the river and losses indicate surface water seeping into the ground (see WWBWC, 2012 for details or www.wwbwc.org/monitoring/monitoring-reports.html).
Figure 7 - Hydrograph for Monitoring Well GW_16 showing the long-term decline in the alluvial aquifer system in the Walla Walla Basin.

Figure 8 - Hydrograph for Monitoring Well GW_19 showing the long-term decline in the alluvial aquifer system in the Walla Walla Basin.
Figure 9 - Hydrograph for McEvoy Spring Creek located just north of the WA-OR state line. Hydrograph shows the decline in spring performance over the last 80 years.

Aquifer Recharge Sites

Locher Road

The Locher Road site (Figure 10), located at the intersection of Stateline Road and Locher Road, is a former gravel quarry that has been operated by Gardena Farms Irrigation District #13 (GFID) as an aquifer recharge (AR) site since 2007. From 2006-2007 through the end of the 2010-2011 season, approximately 1/3 acre of the 4+ acre site was utilized for recharge. In late 2011, the site was reconstructed to allow infiltration over a 2.5 acre portion of the site (Figures 11-15). Inflow volume rates at the site increased from approximately 1.3 cfs to 3.5+ cfs. Total recharge volumes for the season are described below in the results section.

The Locher Road site has operated under successive one and two-year temporary use authorizations issued by Washington Department of Ecology (WADOE). In addition to the temporary use authorizations, in 2010 the Walla Walla Watershed Management Partnership (WWWMP), a locally led organization that co-manages Walla Walla Basin water resources with the State of Washington, passed a Local Water Plan (LWP) that allows GFID to utilize up to 5 cfs of its existing water right for AR (WWWMP, 2010). This authorization, like the temporary use authorization, is governed by the maintenance of minimum instream flows in the river (measured at the Detour Road gauging station), water quality testing, and hydrologic monitoring in local wells and surface water points.
Figure 10 – Walla Walla Basin Washington Aquifer Recharge Sites.
Figure 11 - Preliminary design for expansion of the Locher Road site’s main recharge basin in late 2011.

Figure 12 - Photo during expansion of the Locher Road site’s main recharge basin, December 2011.
Figure 13 - Photo of the completed expansion of the Locher Road site’s main recharge basin, December 2011.

Figure 14 - Photo of the Locher Road aquifer recharge site during operations.
Figure 15 - Aerial photographs showing the Locher Road site before (A) and after (B) the expansion that occurred in December 2011. The diversion and settling pond were not changed. During the expansion work, the ditch from the diversion flume to the settling pond was reinforced with additional rock and the main recharge basin was expanded from approximately 1/3 of an acre to approximately 2.5 acres.

Stiller Pond

In 2012 the WWBWC and the Walla Walla County Conservation District (WWCCD) partnered to develop this AR site (Figure 10 & 16). This site is currently operated under a Local Water Plan with the Walla Walla Watershed Management Partnership (WWWMP) to recharge up to 32 acre-feet of the landowners existing water right via a dry pond located on the Schwenke property, within the lower Mill Creek drainage. Additional authorization for an Environmental Enhancement Project (EEP) was issued in early 2014. This additional authorization allows for diversion of up to 991 acre-feet of water from Mill Creek to the Stiller Pond for AR.

In its current configuration the Stiller Pond site can recharge approximately 1-2 cfs depending upon other demands from the diversion system. Future plans include a new diversion structure and larger pump to allow the delivery of up to approximately 4 cfs to the site. Like the Locher Road site,
this authorization requires minimum instream flow to be met at two gages on Mill Creek and at the WADOE Walla Walla River gauging station at Detour Road and additional hydrologic monitoring and water quality analysis (GSI, 2012 and WWBWC, 2013).

Figure 16 - Stiller Pond Aquifer Recharge site during operations.

LAST CHANCE ROAD
The Last Chance Road site was constructed in June 2015 (Figure 10, 17 and 18). The site did not operate during the 2015 or 2016 recharge seasons, but is ready for future operations. The site includes two recharge features, an infiltration gallery and a new open ditch along the hillside. The project also installed a fish screen on the diversion from the West Little Walla Walla River. This site is currently permitted under a Local Water Plan with the Walla Walla Watershed Management Partnership (WWWMP) to recharge up to 250 acre-feet per year from November 1-May 30. Minimum instream flows (1 cfs) for the site will be measured at the WWBWC’s gauge on the West Little Walla Walla River at Swegle Road (S-227). In its current configuration, the Last Chance Road site can recharge up to 1 cfs of water from the West Little Walla Walla River. If the site operates in the future, an Environmental Enhancement Project permit may be sought for the site (WWWMP, 2014).
Figure 17 - Infiltration gallery area for the Last Chance Road Aquifer Recharge site.

Figure 18 - Irrigation ditch, fish screen and intake (back left) for the Last Chance Road Aquifer Recharge site.
WA Mud Creek

The WA Mud Creek site was constructed in the fall of 2015, but did not operate during the 2016 recharge season (Figure 10). The site encompasses two recharge areas with water delivered via two separate irrigation ditches. The first recharge area will be supplied by the Gardena Farms Canal on the south side of the property. Water from this canal will feed into an infiltration gallery in a draw up-gradient of Mud Creek. The second recharge area will be supplied by the Lowden #2 ditch on the northern side of the property. Water from this ditch will feed into an infiltration field within an existing pasture. The pasture will be reconfigured to enhance infiltration as much as possible. This site is currently permitted under a Local Water Plan with the Walla Walla Watershed Management Partnership (WWWMP) to recharge up to 783.7 acre-feet per year from November 1-May 30. The designed recharge areas are estimated to recharge approximately 1.5-2 cfs between the two sites. If the site operates in the future, an Environmental Enhancement Project permit may be sought for the site (WWWMP, 2014a).

Water Year 2016 Recharge Season Results

Locher Road

Overview

During the WY2016 recharge season, the Locher Road site operated under the Local Water Plan authorization because the temporary authorization had expired. The site operated from early February until early May. Minimum in-stream bypass flows did not prevent the site from operating during the WY2016 season until the early May. Site operations were shut down due to low instream flows in early May. (Figure 19).
Figure 19 – Water Year 2016 hydrograph for Washington Department of Ecology's Walla Walla River at Detour Road (32A100) gage.

Alluvial Well Responses

Groundwater monitoring (Figure 20) at the Locher Road site includes four “on-site” monitoring wells (GW_57, GW_70, GW_71 and GW_72), three down-gradient monitoring wells (GW_108, GW_110 and GW_122) and two down-gradient irrigation wells (GW_103 and GW_104). The four on-site wells surround the site with GW_70 up-gradient, GW_72 and GW_57 immediately down-gradient of the site and GW_71 farther down-gradient. Wells 70, 71 and 72 are shallow alluvial aquifer monitoring wells that were drilled in 2005 to monitoring site operations and aquifer response while well 57 was drilled in 1972-73 to be fully open to the entire gravel sequence. The “on-site” monitoring wells all show a similar response to canal and recharge operations (Figures 21-24). Water levels rise in early October with the start of the Gardena Farms Canal for fall irrigation. The canal was turned off in early-mid December. Starting in early December water levels show neutral to declining conditions until the canal turned on again in early February. Water levels increase due to aquifer recharge operations from early February through late April. Down-gradient wells do not show the same rapid response to canal or recharge operations (Figures 25-27). One of the offsite, distal, monitoring wells, GW_108, also show the influence of nearby groundwater pumping on alluvial aquifer water levels during recharge operations.
Figure 20 – Map showing groundwater monitoring sites for the Locher Road Aquifer Recharge Site.
Figure 21 - Hydrograph for GW_57 during the WY 2016 recharge season.

Figure 22 - Hydrograph for GW_70 during the WY 2016 recharge season.
Figure 23 - Hydrograph for GW_71 during the WY 2016 recharge season. The pressure transducer failed sometime before early February, 2016.

Figure 24 - Hydrograph for GW_72 during the WY 2016 recharge season.
Figure 25 - Hydrograph for GW_108 during the WY 2016 recharge season. The pressure transducer failed sometime in before mid-february.

Figure 26 - Hydrograph for GW_110 during the WY 2016 recharge season.
Figure 27 - Hydrograph for GW_122 during the WY 2016 recharge season.

WATER QUALITY

Full water quality data and laboratory QA records can be found in Appendix B.

SOURCE WATER

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>February 2nd, 2016</th>
<th>April 6th, 2016</th>
<th>May 11th, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.40</td>
<td>7.54</td>
<td>7.78</td>
</tr>
<tr>
<td>Nitrates (mg/L)</td>
<td>0.35</td>
<td>0.19</td>
<td>0.65</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>7.5</td>
<td>7.5</td>
<td>13.2</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS) (mg/L)</td>
<td>86</td>
<td>68</td>
<td>105</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>0.9</td>
<td>0.89</td>
<td>2.06</td>
</tr>
<tr>
<td>Total DCPA (Dacthal) (µg/L)</td>
<td>0.12</td>
<td>0.16</td>
<td>0.67</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>32.9</td>
<td>68.5</td>
<td>1490</td>
</tr>
</tbody>
</table>

UP-GRADEINT WELL (GW_70 – L1)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>February 2nd, 2016</th>
<th>April 6th, 2016</th>
<th>May 11th, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.17</td>
<td>6.95</td>
<td>6.87</td>
</tr>
<tr>
<td>Nitrates (mg/L)</td>
<td>6.72</td>
<td>0.25</td>
<td>3.31</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>37.8</td>
<td>9.8</td>
<td>23.4</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS) (mg/L)</td>
<td>273</td>
<td>95</td>
<td>174</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>6</td>
<td>1.10</td>
<td>3.31</td>
</tr>
<tr>
<td>Total DCPA (Dacthal) (µg/L)</td>
<td>ND</td>
<td>0.10</td>
<td>ND</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>713</td>
<td>1110</td>
<td>1120</td>
</tr>
</tbody>
</table>
Mid-gradient Well (GW_72 – L3)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>February 2(^{nd}), 2016</th>
<th>April 6(^{th}), 2016</th>
<th>May 11(^{th}), 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.24</td>
<td>6.88</td>
<td>6.76</td>
</tr>
<tr>
<td>Nitrates (mg/L)</td>
<td>3.23</td>
<td>1.41</td>
<td>0.86</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>17.5</td>
<td>10.6</td>
<td>11.1</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS) (mg/L)</td>
<td>147</td>
<td>101</td>
<td>98</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>2.4</td>
<td>0.95</td>
<td>1.67</td>
</tr>
<tr>
<td>Total DCPA (Dacthal) (µg/L)</td>
<td>ND</td>
<td>0.04</td>
<td>ND</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>681</td>
<td>699</td>
<td>1130</td>
</tr>
</tbody>
</table>

Down-gradient Well (GW_71 – L2)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>February 2(^{nd}), 2016</th>
<th>April 6(^{th}), 2016</th>
<th>May 11(^{th}), 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.12</td>
<td>6.62</td>
<td>6.82</td>
</tr>
<tr>
<td>Nitrates (mg/L)</td>
<td>3.45</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>24</td>
<td>53.3</td>
<td>34.3</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS) (mg/L)</td>
<td>190</td>
<td>373</td>
<td>250</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>4.3</td>
<td>4.63</td>
<td>4.03</td>
</tr>
<tr>
<td>Total DCPA (Dacthal) (µg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>710</td>
<td>1120</td>
<td>984</td>
</tr>
</tbody>
</table>

Stillier Pond

Overview

The WWCCD operated the Stillier Pond Aquifer Recharge site during the WY2016 recharge season. WWBWC staff collected monitoring data, including water quality samples while WWCCD managed and collected inflow data. The Stillier Pond site operated under the WWWMP Local Water Plan LW-10-02 which allows 32 acre-feet to be recharged to the shallow alluvial aquifer and the EEP temporary authorization for up to 991 acre-feet. Minimum in-stream flows did not prevent the site from operating during the WY2016 season until the early part of April (Figures 19, 28 and 29). Mill Creek was monitored at two locations, above the site at Wallula Road (Figure 28) and below the site at Swegle Road (Figure 29). During the WY2016 recharge season 278.06 acre-feet of water was delivered to the site.
Figure 28 - 2016 hydrograph for WWBWC’s Mill Creek at Wallula Road (S520) gage.

Figure 29 - 2016 hydrograph for WWBWC’s Mill Creek at Swegle Road (S512) gage. Note, this site was started once recharge operations started.
Alluvial Well Responses

Groundwater monitoring (Figure 30) at the Stiller Pond site includes four on-site monitoring wells (GW_136, GW_145, GW_146 and GW_147). The four on-site wells surround the site with GW_147 up-gradient, GW_136 immediately down-gradient of the site and GW_145 and GW_146 farther down-gradient. All of the on-site wells are purpose-built monitoring wells. All of the on-site wells show a similar response during and after recharge operations (Figures 31-34). Water levels start to rise coinciding with the start of recharge operations. Water levels appear to peak in late March or early April coinciding with the end of recharge operations. After recharge operations end in early April, water levels start to decline.

Figure 30 - Map showing groundwater and surface water monitoring sites for the Stiller Pond Aquifer Recharge Site.
Figure 31 - Hydrograph for GW_136 during the WY 2016 recharge season.

Figure 32 - Hydrograph for GW_145 during the WY 2016 recharge season.
Figure 33 - Hydrograph for GW_146 during the WY 2016 recharge season.

Figure 34 - Hydrograph for GW_147 during the WY 2016 recharge season.
WATER QUALITY

Full water quality data and laboratory QA records can be found in Appendix B.

SOURCE WATER

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>February 3rd, 2016</th>
<th>April 7th, 2016</th>
<th>May 3rd, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (mg/L)</td>
<td>0.44</td>
<td>0.9</td>
<td>1.12</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>7.0</td>
<td>8.6</td>
<td>13.5</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>95</td>
<td>84</td>
<td>113</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>2.88</td>
<td>2.9</td>
<td>7.28</td>
</tr>
<tr>
<td>Total DCPA (µg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>56.5</td>
<td>78.2</td>
<td>139</td>
</tr>
</tbody>
</table>

UP-GRADIENT WELL (GW_147)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>February 3rd, 2016</th>
<th>April 7th, 2016</th>
<th>May 3rd, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>6</td>
<td>5.94</td>
<td>5.50</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>44.2</td>
<td>45.1</td>
<td>43.7</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>315</td>
<td>300</td>
<td>293</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>32</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Total DCPA (µg/L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>634</td>
<td>703</td>
<td>1050</td>
</tr>
</tbody>
</table>

MID-GRADIENT WELL (GW_136)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>February 3rd, 2016</th>
<th>April 7th, 2016</th>
<th>May 3rd, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>13</td>
<td>3.34</td>
<td>0.48</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>66.4</td>
<td>49.2</td>
<td>39.7</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>460</td>
<td>270</td>
<td>211</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>40</td>
<td>15</td>
<td>4.29</td>
</tr>
<tr>
<td>Total DCPA (µg/L)</td>
<td>0.84</td>
<td>0.15</td>
<td>ND</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>674</td>
<td>734</td>
<td>1050</td>
</tr>
</tbody>
</table>

DOWN-GRADIENT WELL (GW_145)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>February 3rd, 2016</th>
<th>April 7th, 2016</th>
<th>May 3rd, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>10</td>
<td>11.63</td>
<td>6.77</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>61.8</td>
<td>62.5</td>
<td>56.7</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>394</td>
<td>416</td>
<td>372</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>36</td>
<td>39</td>
<td>28</td>
</tr>
<tr>
<td>Total DCPA (µg/L)</td>
<td>0.09</td>
<td>0.11</td>
<td>ND</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>734</td>
<td>817</td>
<td>1210</td>
</tr>
</tbody>
</table>

DOWN-GRADIENT WELL (GW_146)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>February 3rd, 2016</th>
<th>April 7th, 2016</th>
<th>May 3rd, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>18</td>
<td>16.71</td>
<td>10</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>70.5</td>
<td>70.1</td>
<td>57.8</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>560</td>
<td>510</td>
<td>456</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>47</td>
<td>47</td>
<td>34</td>
</tr>
<tr>
<td>Total DCPA (µg/L)</td>
<td>4.37</td>
<td>3.9</td>
<td>ND</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>858</td>
<td>1100</td>
<td>1430</td>
</tr>
</tbody>
</table>
Soil Quality

Full soil quality data and laboratory QA records can be found in Appendix B.

Figure 35 – Surface soil nitrate values at the Stiller Pond site during the WY2016 recharge season.

Figure 36 - Subsurface (~1’ below ground surface) soil nitrate values at the Stiller Pond site during the WY2016 recharge season.
LAST CHANCE ROAD

OVERVIEW
The Last Chance Road site did not operate during the WY2016 recharge season. A pre-operations sample was collected, however no further samples were collected because the site did not operate (Figure 39). West Little Walla Walla River flows were monitored at the WWBWC’s S-227 gage (Figure 40).

Figure 37 – Surface soil Polychlorinated Biphenyls (PCBs) values at the Stiller Pond site during the WY2016 recharge season.

Figure 38 - Subsurface (~1’ below ground surface) soil Polychlorinated Biphenyls (PCBs) values at the Stiller Pond site during the WY2016 recharge season.
Figure 39 - Map showing groundwater monitoring sites for the Last Chance Road Aquifer Recharge Site.
Figure 40 – Water Year 2016 hydrograph for WWBWC’s West Little Walla Walla River at Swegle Road (S227) gage.

WATER QUALITY

Full water quality data and laboratory QA records can be found in Appendix B.

SOURCE WATER (RECHARGE INTAKE)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>March 14th, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>59.4</td>
</tr>
</tbody>
</table>

UP-GRADIENT WELL (GW_158)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>March 14th, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>87.2</td>
</tr>
</tbody>
</table>

MID-GRADIENT WELL (GW_148)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>March 14th, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>1030</td>
</tr>
</tbody>
</table>

MID-GRADIENT WELL (GW_159)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>March 14th, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychlorinated Biphenyls (pg/L)</td>
<td>1030</td>
</tr>
</tbody>
</table>

DOWN-GRADIENT WELL (GW_149)

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>March 14th, 2016</th>
</tr>
</thead>
</table>
WA MUD CREEK

OVERVIEW
The WA Mud Creek site did not operate during the WY2016 recharge season (Figure 41). The site was constructed in the fall of 2015 and is ready for future recharge operations. No water quality or soil quality samples were collected.

Figure 41 - Map showing groundwater monitoring sites for the WA Mud Creek Aquifer Recharge Site.

SUMMARY AND DISCUSSION

WATER LEVEL AND QUANTITY
The AR program summarized here simulates floodplain function and processes that have been lost due to irrigation and urban development and channelization of the river and stream channels for flood control and other uses. With continued AR activities at the Locher Road and Stiller Pond sites
we anticipate that increasing alluvial aquifer water levels could lead to the types of spring flow increases and increased groundwater inputs to streams and rivers that have been observed in recent years resulting from Oregon AR activities elsewhere in the valley. Also, the addition of the Last Chance Road and WA Mud Creek sites will likely increase spring and stream flows in the West Little Walla Walla River and Mud Creek respectively, when those sites are operated.

Over the course of the WY2016 recharge season, the aquifer recharge program in the Washington portion of the Walla Walla Basin put ~1,143.65 acre-feet (~372.66 million gallons) of winter/spring run-off water into the shallow alluvial aquifer at the Locher Road site (525.59 acre-feet and ~340 acre-feet during conveyance) and Stiller Pond (~278.06 acre-feet) AR sites. Water levels in the alluvial aquifer at both sites responded to AR activities. More data will need to be collected, especially at the Stiller Pond site, in order to establish trends and ongoing improvements to the alluvial aquifer system or surface water system.

The Locher Road site wells indicate improving groundwater levels from the start of the project in 2007 until approximately 2011-12. Water levels in the area start to show a yearly decline starting in the summer of 2012. These decreasing water levels coincide with the last phase of the Hyline piping project on the Oregon side of the border that was completed in 2012. Water levels around the Locher Road site have dropped approximately 1 foot per year since 2012 (Appendix A). Water levels in the area rise during recharge operations, however the volume of water added to the alluvial aquifer does not appear to be sufficient to overcome the regional deficit. Recharge operations during 2013-2015 were limited in length and volume. WY2016 recharge operations are a significant improvement. The complete impact of the WY2016 recharge operations at the Locher Road site will not be realized until after summer/fall time water levels are recorded. Piping of the Gardena Farms Canal (source water for Locher Road) would most likely increase the rate of decline in water levels in the area without proper mitigation.

Trends and impacts due to recharge operations at the Stiller Pond site cannot yet be inferred due to limited data. However, based upon the few years of data at the site, there appear to be positive trends in groundwater levels at all four monitoring wells. Additional years of operation and data collection will be needed to further evaluate the influence of this site both on groundwater and surface conditions.

WATER QUALITY

As mentioned previously in this report and in GSI, 2012a, aquifer recharge program operations do not appear to have degraded groundwater quality (Appendix B).

The water quality data collected over several AR seasons from four different sites are interpreted to have not resulted in alluvial aquifer water quality degradation. Field parameters and major ion hydrochemical trends seen in monitoring well data commonly show reduced concentrations, indicating dilution of groundwater concentrations by AR operations. A few anomalies did occur in these trends, but low source water concentrations versus high monitoring well concentrations strongly suggest that AR operations were not the cause of these anomalies. There were no significant SOC detections from any site. Of the SOC detections seen in the data sets, SOC concentrations are low enough to be considered background levels
and/or these detections were instances of localized transient introduction to the water table from an unaltered ground surface AR site (specifically HW).

Locher Road water and soil quality data was reviewed by WADOE staff and “based upon two year of results of water quality monitoring data at the Locher Road SAR site, Ecology has concluded that operation of the site is not contaminating groundwater with PCBs and chlorinated pesticides” (Kuttel, 2015). A similar review process is in process with the Stiller Pond site using data collected through the WY2015 recharge season.
REFERENCES

APPENDIX A - MONITORING WELL HYDROGRAPHS, INCLUDING ALL AVAILABLE DATA, FOR THE Locher Road and Stiller Pond Aquifer Recharge sites
Monitoring Well GW_57

- Manual Water Level Measurements
Monitoring Well GW_70

- Manual Water Level Measurements
Monitoring Well GW_103

- Manual Water Level Measurements

Water Level (feet bgs) [Green Line]

Water Temperature (°C) [Blue Line]

Date

Monitoring Well GW_110

- Manual Water Level Measurements

![Graph showing water level and temperature over time](image-url)
Monitoring Well GW_136

- Manual Water Level Measurements
APPENDIX B - WATER & SOIL QUALITY RESULTS FOR WY2016

Download Water and Soil Quality Data

www.wwbwc.org/images/Projects/AR/Reports/WY2016_Data.zip
Locher Road – WY2016
March 21, 2016

Mr. Steve Patten
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

RE: 16-03235 - Locher Road

Dear Mr. Steve Patten,

Your project: Locher Road, was received on Friday February 12, 2016.

All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone us at 800 755-9295.

Respectfully

Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Enclosures: Data Report
Data Report

Client Name: Walla Walla Basin Watershed Council
Reference Number: 16-03235
Project: Locher Road
Report Date: 3/21/16
Date Received: 2/12/16
Approved by: bj,dml,jaa,mvp
Authorized by: Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Sample Description: GW_70 - Locher Road
Lab Number: 7592
Sample Comment:
Sample Date: 2/11/16
Collected By: Steven Patten
Date: 8:50 am

Parameter Results

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.18</td>
<td>0.1</td>
<td>0.2</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>2/12/16</td>
<td>RHF</td>
<td>TURB_160212</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>2/23/16</td>
<td>MMH</td>
<td>245.1_160223</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>5.9</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/13/16</td>
<td>MMH</td>
<td>I160212A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/13/16</td>
<td>MMH</td>
<td>I160212A</td>
<td></td>
</tr>
<tr>
<td>14808-79-9</td>
<td>SULFATE</td>
<td>11.6</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/13/16</td>
<td>MMH</td>
<td>I160212A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>159</td>
<td>10.0</td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>2/16/16</td>
<td>ANP</td>
<td>310.2_160216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>10.0</td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>2/16/16</td>
<td>ANP</td>
<td>310.2_160216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.59</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND</td>
<td>5</td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>a</td>
<td>2/12/16</td>
<td>RHF</td>
<td>COLOR_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>2/16/16</td>
<td>RHF</td>
<td>ODOR_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>251</td>
<td>10</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>2/16/16</td>
<td>MMH</td>
<td>TDS_160216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.38</td>
<td></td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>2/12/16</td>
<td>RHF</td>
<td>PH_160212</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>6.96</td>
<td>0.05</td>
<td>0.0021</td>
<td>mg/L</td>
<td>5.0</td>
<td>SM4500-NO3 F</td>
<td>a</td>
<td>2/12/16</td>
<td>ANP</td>
<td>NO3N02_160212</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.09</td>
<td>0.01</td>
<td>0.0016</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>2/17/16</td>
<td>ANP</td>
<td>OPHOS_160212</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.025</td>
<td>0.25</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5540 C</td>
<td>a</td>
<td>2/16/16</td>
<td>JRM</td>
<td>AMTS_160216</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>37.8</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>200.7</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.7_160222A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.02 J</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.7_160222A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>ND</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.7_160222A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00026 J</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.8_160222A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.042</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.8_160222A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.8_160222A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.00013 J</td>
<td>0.001</td>
<td>0.0011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.8_160222A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0007 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.8_160222A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.8_160222A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200.8_160222A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

If you have any questions concerning this report contact us at the above phone number.
Data Report

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Element</th>
<th>Type</th>
<th>Result</th>
<th>Units</th>
<th>Method</th>
<th>Date</th>
<th>Dilution Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>mg/L</td>
<td>6.30E-05</td>
<td>200.8/3010A</td>
<td>a</td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0011 J</td>
<td>0.0025</td>
<td>mg/L</td>
<td>0.00047</td>
<td>200.8/3010A</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>E. Coli</td>
<td><1</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>TOTAL COLIFORM</td>
<td><1</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>b</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.069</td>
<td>0.010</td>
<td>mg/L</td>
<td>0.0061</td>
<td>SM4500-P B(5)</td>
<td>a</td>
</tr>
</tbody>
</table>

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. = Dilution Factor

Form: cResult.rpt
Data Report

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed By</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.31</td>
<td>0.10</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>RHF</td>
<td>2/12/16</td>
<td>TURB_160212</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>HHH</td>
<td>2/23/16</td>
<td>MMH_160223</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>4.2</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>10.3</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>111</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td>SM203</td>
<td>3/11/16</td>
<td>ANP_160216</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIIVITY</td>
<td>-1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SM2150</td>
<td>2/12/16</td>
<td>ODOR_160212</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td></td>
<td>SM2120 B</td>
<td>2/12/16</td>
<td>RHF_160212</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>0.025</td>
<td>0.025</td>
<td></td>
<td>SM9540 C</td>
<td>2/12/16</td>
<td>JRF_160212</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>184</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>2/16/16</td>
<td>MMH_160216</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.26</td>
<td>H5</td>
<td></td>
<td></td>
<td></td>
<td>SM4500-H+ B</td>
<td>2/12/16</td>
<td>RHF_160212</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>2.91</td>
<td>0.010</td>
<td>0.0021</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>2/12/16</td>
<td>ANP_160212</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.09</td>
<td>0.01</td>
<td>0.0016</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>2/12/16</td>
<td>ANP_160212</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>25.6</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>2/22/16</td>
<td>BJ_160222 A</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.04</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.0005</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00026</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.031</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0011</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0014</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.068</td>
<td>0.010</td>
<td>0.0061</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- DF = Dilution Factor
- SI = Single Injection
- MDL = Method Detection Limit
- pH Units = pH
- Temperature: °C
- Units = mg/L, mg CaCO3/L, mg/L, mg/L, mg/L, mg/L, TO1, and pH Units

Analyst: Steven Patten

Laboratory Number: 7593

Sample Description: GW_71 - Locher Road

Sample Date: 2/11/16 10:10 am

Collected By: Steven Patten

Sample Comment: Lab Number: 7593 - Locher Road

Sample Date: 2/11/16 10:10 am

Reference Number: 16-03235

Report Date: 3/21/16
Data Report

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10167</td>
<td>TURBIDITY</td>
<td>1.02</td>
<td>0.1</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>2/12/16</td>
<td>RHF</td>
<td>TURB_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>2/23/16</td>
<td>MMH</td>
<td>245_1_160223</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>2.8</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>2/13/16</td>
<td>MMH</td>
<td>I160212A</td>
<td></td>
</tr>
<tr>
<td>16894-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>2/13/16</td>
<td>MMH</td>
<td>I160212A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>9.8</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>2/13/16</td>
<td>MMH</td>
<td>I160212A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>79.8</td>
<td>10.0</td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>2/16/16</td>
<td>ANP</td>
<td>310_2_160216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>10.0</td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>2/16/16</td>
<td>ANP</td>
<td>310_2_160216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIIVITY</td>
<td>-1.31</td>
<td></td>
<td></td>
<td>Si</td>
<td>1.0</td>
<td>SM203</td>
<td>3/1/16</td>
<td>MVP</td>
<td>COR_160301</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND</td>
<td>5</td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>2/12/16</td>
<td>RHF</td>
<td>COLOR_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>2/12/16</td>
<td>RHF</td>
<td>ODOR_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>176</td>
<td>10</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>2/16/16</td>
<td>MMH</td>
<td>TDS_160216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.16</td>
<td>H5</td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>2/12/16</td>
<td>RHF</td>
<td>PH_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>6.80</td>
<td>0.05</td>
<td>0.0021</td>
<td>mg/L</td>
<td>5.0</td>
<td>SM4500-N03 F</td>
<td>2/12/16</td>
<td>ANP</td>
<td>NO3NO2_160212</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.08</td>
<td>0.01</td>
<td>0.0016</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>2/12/16</td>
<td>ANP</td>
<td>OPHOS_160212</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.025</td>
<td>0.255</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5540 C</td>
<td>2/12/16</td>
<td>JR</td>
<td>AMT540_160212</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>23.0</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200_7_160222A</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>1.13</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200_7_160222A</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.029</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>2/22/16</td>
<td>BJ</td>
<td>200_7_160222A</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.0005</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>2/22/16</td>
<td>MVP</td>
<td>200_8_160222W</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.030</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>2/22/16</td>
<td>MVP</td>
<td>200_8_160222W</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>2/22/16</td>
<td>MVP</td>
<td>200_8_160222W</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.0005</td>
<td>0.0001</td>
<td>0.0011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>2/22/16</td>
<td>MVP</td>
<td>200_8_160222W</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0017</td>
<td>0.002</td>
<td>8.36E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>2/22/16</td>
<td>MVP</td>
<td>200_8_160222W</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.00018</td>
<td>0.0005</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>2/22/16</td>
<td>MVP</td>
<td>200_8_160222W</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>2/22/16</td>
<td>MVP</td>
<td>200_8_160222W</td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.00025</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>2/22/16</td>
<td>MVP</td>
<td>200_8_160222W</td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0023</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>2/23/16</td>
<td>MVP</td>
<td>200_8_160222W</td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1</td>
<td>1</td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM45223 B.2.b/Colilert-18</td>
<td>2/13/16</td>
<td>dml</td>
<td>qt_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td><1</td>
<td>1</td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM45223 B.2.b/Colilert-18</td>
<td>2/13/16</td>
<td>dml</td>
<td>qt_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.044</td>
<td>0.010</td>
<td>0.0061</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F/SM4500-P B(R)</td>
<td>2/16/16</td>
<td>ANP</td>
<td>TPHOS_160216</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

Form: cResult.rpt
Data Report

Sample Description: Canal - Locher Road
Lab Number: 7595
Sample Comment:
Sample Date: 2/11/16 10:45 am
Collected By: Steven Patten

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.71</td>
<td>0.10</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>RHF</td>
<td>2/12/16</td>
<td>TURB_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>MMH</td>
<td>2/23/16</td>
<td>160223</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>3.4</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH</td>
<td>2/13/16</td>
<td>160212A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.13</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH</td>
<td>2/13/16</td>
<td>160212A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>12</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH</td>
<td>2/13/16</td>
<td>160212A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>164</td>
<td>10.0</td>
<td>mg</td>
<td>CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>ANP</td>
<td>2/16/16</td>
<td>310.2_160216</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>10.0</td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>ANP</td>
<td>2/16/16</td>
<td>310.2_160216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIIVITY</td>
<td>-0.67</td>
<td>1</td>
<td>Sil</td>
<td></td>
<td>1.0</td>
<td>SM203</td>
<td>a</td>
<td>MVP</td>
<td>3/1/16</td>
<td>COR_160301</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND</td>
<td>5</td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>a</td>
<td>RHF</td>
<td>2/12/16</td>
<td>COLOR_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>2.38</td>
<td>1</td>
<td>TON</td>
<td></td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>RHF</td>
<td>2/12/16</td>
<td>ODOR_160212</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>230</td>
<td>10</td>
<td>mg/L</td>
<td></td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>MMH</td>
<td>TDS_160216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.35 H5</td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>RHF</td>
<td>2/12/16</td>
<td>PH_160212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>3.15</td>
<td>0.010</td>
<td>0.0021</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>a</td>
<td>ANP</td>
<td>NO3NO2_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.05</td>
<td>0.01</td>
<td>0.0016</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>ANP</td>
<td>OPHOS_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5840 C</td>
<td>a</td>
<td>JR</td>
<td>AMTS450_160212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>32.1</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>a</td>
<td>BJ</td>
<td>2/22/16</td>
<td>200.7_160222A</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.05</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>a</td>
<td>BJ</td>
<td>2/22/16</td>
<td>200.7_160222A</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.008</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>a</td>
<td>BJ</td>
<td>2/22/16</td>
<td>200.7_160222A</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00016 J</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>a</td>
<td>MVP</td>
<td>200.8_160222W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.033</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>a</td>
<td>MVP</td>
<td>200.8_160222W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>a</td>
<td>MVP</td>
<td>200.8_160222W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>a</td>
<td>MVP</td>
<td>200.8_160222W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.001 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>a</td>
<td>MVP</td>
<td>200.8_160222W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>a</td>
<td>MVP</td>
<td>200.8_160222W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>0.0006 J</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>a</td>
<td>MVP</td>
<td>200.8_160222W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>a</td>
<td>MVP</td>
<td>200.8_160222W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0017 J</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>a</td>
<td>MVP</td>
<td>200.8_160222W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td></td>
<td>3.1</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B 2. b/ColIert-18</td>
<td>b</td>
<td>dml</td>
<td>qt_160212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td></td>
<td>222.4</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B 2. b/ColIert-18</td>
<td>b</td>
<td>dml</td>
<td>qt_160212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.039</td>
<td>0.010</td>
<td>0.0061</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F/SM4500-P B/R</td>
<td>a</td>
<td>ANP</td>
<td>TPHOS_160216</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
ND = Not detected below the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor

Form: cResult.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'-DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'-DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'-DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number:</th>
<th>07595</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field ID:</td>
<td>Canal</td>
</tr>
<tr>
<td>Sample Description:</td>
<td>Locher Road</td>
</tr>
<tr>
<td>Matrix:</td>
<td>Water</td>
</tr>
<tr>
<td>Sample Date:</td>
<td>2/11/16</td>
</tr>
<tr>
<td>Extraction Date:</td>
<td>2/18/16</td>
</tr>
<tr>
<td>Extraction Method:</td>
<td>3510C</td>
</tr>
</tbody>
</table>

Reference Number: 16-03235
Project: Locher Road

Report Date: 3/21/16
Date Analyzed: 2/26/16
Analyst: RJK
Analytical Method: 8151A
Batch: 8151W_160218
Approved By: co.pdm.rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

CAS Compound

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-6</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.77</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **Flags** are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- **ND** - indicates the compound was not detected above the PQL or MDL.
- **PQL** = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **D.F.** - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Reference Number: 16-03235
Project: Locher Road

Report Date: 3/21/16
Date Analyzed: 2/17/16
Analyst: HY
Analytical Method: 8260C
Batch: 8260W_160217
Approved By: co.pdm,rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,4-TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-80-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-8</td>
<td>ETHYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-95-1</td>
<td>N - PROPYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYL TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

- **Lab Number:** 07594
- **Field ID:** GW_72
- **Sample Description:** Locher Road
- **Matrix:** Water
- **Sample Date:** 2/11/16
- **Extraction Date:** 2/18/16
- **Extraction Method:** 3510C

Report Date: 3/21/16
Date Analyzed: 2/29/16
Analyst: RJK
Analytical Method: 8081B
Batch: 8081w_160218
Approved By: co.pdm,rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 07594
Field ID: GW_72
Sample Description: Locher Road
Matrix: Water
Sample Date: 2/11/16
Extraction Date: 2/18/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-68-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>0.77</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 07594
Field ID: GW_72
Sample Description: Locher Road
Matrix: Water
Sample Date: 2/11/16
Extraction Date: 2/17/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,4,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-96-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M, P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-91-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 07593
Field ID: GW_71
Sample Description: Locher Road
Matrix: Water
Sample Date: 2/11/16
Extraction Date: 2/18/16
Extraction Method: 3510C

Report Date: 3/21/16
Date Analyzed: 2/29/16
Analytical Method: 8081B
Batch: 8081w_160218
Approved By: co.pdm.rjk

Authorized by: Lawrence J Henderson, PhD
Director of Laboratories, Vice President

CAS Compound RESULT Flag UNITS PQL MRL MDL D.F. Lab COMMENT

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'-DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'-DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'-DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2, -D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2, DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street, Milton-Freewater, OR 97862

Lab Number: 07593
Field ID: GW_71
Sample Description: Locher Road
Matrix: Water
Sample Date: 2/11/16
Extraction Date: 2/17/16
Extraction Method: 5030B

Reference Number: Project: Locher Road

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-56-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-8</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYL TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 07592
Field ID: GW_70

Sample Description: Locher Road
Matrix: Water
Sample Date: 2/11/16
Extraction Date: 2/18/16
Extraction Method: 3510C

Results

- Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ADRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'-DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'-DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'-DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
CAS Compound RESULT Flag UNITS PQL MRL MDL D.F. Lab COMMENT

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4-D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>86-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
### CAS	Compound	RESULT	Flag	UNITS	PQL	MRL	MDL	D.F.	Lab	COMMENT
75-34-3 | 1,1 - DICHLOROETHANE | ND | | | | | | | | |
75-35-4 | 1,1 - DICHLOROETHYLENE | ND | | | | | | | | |
563-58-6 | 1,1 - DICHLOROPROPENE | ND | | | | | | | | |
71-55-6 | 1,1,1,1 - TRICHLOROETHANE | ND | | | | | | | | |
630-20-6 | 1,1,1,2 - TETRACHLOROETHANE | ND | | | | | | | | |
79-00-5 | 1,1,2 - TRICHLOROETHANE | ND | | | | | | | | |
79-34-5 | 1,1,2,2 - TETRACHLOROETHANE | ND | | | | | | | | |
106-93-4 | 1,2 - DIBROMOETHANE (EDB) | ND | | | | | | | | |
95-50-1 | 1,2 - DICHLOROBENZENE (ortho) | ND | | | | | | | | |
107-06-2 | 1,2 - DICHLOROETHANE | ND | | | | | | | | |
78-87-5 | 1,2 - DICHLOROPROPANE | ND | | | | | | | | |
87-61-6 | 1,2,3 - TRICHLOROBENZENE | ND | | | | | | | | |
96-18-4 | 1,2,3 - TRICHLOROPROPANE | ND | | | | | | | | |
120-82-1 | 1,2,4 - TRICHLOROBENZENE | ND | | | | | | | | |
95-63-6 | 1,2,4 - TRICHLOROPROPANE | ND | | | | | | | | |
96-12-8 | 1,2,4 - TRIMETHYLBENZENE | ND | | | | | | | | |
541-73-1 | 1,3 - DICHLOROBENZENE (meta) | ND | | | | | | | | |
142-29-9 | 1,3 - DICHLOROPROPANE | ND | | | | | | | | |
108-67-8 | 1,3,5 - TRIMETHYLBENZENE | ND | | | | | | | | |
106-46-7 | 1,4 - DICHLOROBENZENE (para) | ND | | | | | | | | |
594-20-7 | 2,2 - DICHLOROPROPANE | ND | | | | | | | | |
71-43-2 | BENZENE | ND | | | | | | | | |
108-86-1 | BROMOBENZENE | ND | | | | | | | | |
74-97-5 | BROMOCHLOROMETHANE | ND | | | | | | | | |
75-27-4 | BROMODICHLOROMETHANE | ND | | | | | | | | |
75-25-2 | BROMOFORM | ND | | | | | | | | |
74-83-9 | BROMOMETHANE | ND | | | | | | | | |

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10081-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.
Calibration Check

Reference Number: 03/21/16
Report Date: 16-03235

Batch Analyte Result True Value Units Method % Recovery Limits* Qualifier Type Comment

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160222A</td>
<td>2 CALCIUM</td>
<td>10.4</td>
<td>11</td>
<td>mg/L</td>
<td>200.7</td>
<td>95</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IRON</td>
<td>0.99</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>99</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MANGANESE</td>
<td>1.04</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160222WW</td>
<td>0 ARSENIC</td>
<td>0.00102</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>102</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>BARIUM</td>
<td>0.00109</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>109</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>CADMIUM</td>
<td>0.00099</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>CHROMIUM</td>
<td>0.00098</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>98</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>COPPER</td>
<td>0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>LEAD</td>
<td>0.00096</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>SELENIUM</td>
<td>0.00091</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>91</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>SILVER</td>
<td>0.00094</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>94</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ZINC</td>
<td>0.00106</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>106</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>245.1_160223</td>
<td>0 MERCURY</td>
<td>0.00196</td>
<td>0.00200</td>
<td>mg/L</td>
<td>245.1</td>
<td>98</td>
<td>95-105</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MERCURY</td>
<td>0.000175</td>
<td>0.000200</td>
<td>mg/L</td>
<td>245.1</td>
<td>88</td>
<td>95-105</td>
<td>CAL MRL</td>
<td></td>
</tr>
<tr>
<td>I160212A</td>
<td>0 CHLORIDE</td>
<td>1.0</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>FLUORIDE</td>
<td>0.96</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>96</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>SULFATE</td>
<td>2</td>
<td>2</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160212</td>
<td>0 ORTHO-PHOSPHATE</td>
<td>0.98</td>
<td>1.00</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>98</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>pH_160212</td>
<td>0 HYDROGEN ION (pH)</td>
<td>8.00</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>HYDROGEN ION (pH)</td>
<td>8.02</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160216</td>
<td>0 TOTAL PHOSPHORUS</td>
<td>0.103</td>
<td>0.100</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>103</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>TURB_160212</td>
<td>0 TURBIDITY</td>
<td>9.84</td>
<td>10.0</td>
<td>NTU</td>
<td>180.1</td>
<td>98</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160222A</td>
<td>CALCIUM</td>
<td>13.2</td>
<td>13</td>
<td>mg/L</td>
<td>200.7</td>
<td>102</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>0.52</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>0.54</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>108</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>200.8_160222W</td>
<td>ARSENIC</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.0125</td>
<td>0.0125</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>245.1_160223</td>
<td>MERCURY</td>
<td>0.00162</td>
<td>0.00167</td>
<td>mg/L</td>
<td>245.1</td>
<td>97</td>
<td>90-110</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>8081W_160218</td>
<td>4,4' - DDD</td>
<td>0.46</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>92</td>
<td>78-132</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4' - DDE</td>
<td>0.48</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>96</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4' - DDT</td>
<td>0.53</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>106</td>
<td>56-158</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALDRIN</td>
<td>0.4</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>80</td>
<td>68-128</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALPHA-CHLORDANE</td>
<td>0.48</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>96</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, ALPHA -</td>
<td>0.47</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>94</td>
<td>37-134</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, BETA -</td>
<td>0.44</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>88</td>
<td>17-147</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, DELTA -</td>
<td>0.47</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>94</td>
<td>32-127</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIELDRIN</td>
<td>0.51</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>102</td>
<td>74-134</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN I</td>
<td>0.48</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>96</td>
<td>67-133</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN II</td>
<td>0.46</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>92</td>
<td>64-142</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN SULFATE</td>
<td>0.47</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>94</td>
<td>71-143</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN</td>
<td>0.48</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>96</td>
<td>30-147</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN ALDEHYDE</td>
<td>0.46</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>92</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN KETONE</td>
<td>0.46</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>92</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAMMA-CHLORDANE</td>
<td>0.49</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>98</td>
<td>74-124</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 16-03235
Report Date: 03/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Type</th>
<th>QC Qualifier</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8081W_160218</td>
<td>HEPTACHLOR</td>
<td>0.46</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>92</td>
<td>61-133</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>0.48</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>96</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINDANE (BHC - GAMMA)</td>
<td>0.47</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>94</td>
<td>17-140</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHOXYCHLOR</td>
<td>0.49</td>
<td>0.5</td>
<td>ug/L</td>
<td>8081A</td>
<td>98</td>
<td>41-157</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>2,4 - D</td>
<td>1.21</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>61</td>
<td>60-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>8.04</td>
<td>8</td>
<td>ug/L</td>
<td>8151A</td>
<td>101</td>
<td>49-136</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>1.06</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>106</td>
<td>68-122</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>0.75</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>75</td>
<td>62-128</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>1.35</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>135</td>
<td>65-125</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>2.19</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>110</td>
<td>67-121</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>13.6</td>
<td>13</td>
<td>ug/L</td>
<td>8151A</td>
<td>105</td>
<td>53-142</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>0.95</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>95</td>
<td>66-126</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>2.9</td>
<td>3</td>
<td>ug/L</td>
<td>8151A</td>
<td>97</td>
<td>63-123</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>1.58</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>79</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>0.9</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>90</td>
<td>69-123</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>0.91</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>91</td>
<td>48-114</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>0.27</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>27</td>
<td>48-168</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>2,4 - D</td>
<td>1.8</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>90</td>
<td>60-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>7.9</td>
<td>8</td>
<td>ug/L</td>
<td>8151A</td>
<td>99</td>
<td>49-136</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>0.92</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>92</td>
<td>68-122</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>0.85</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>85</td>
<td>62-128</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>0.81</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>81</td>
<td>65-125</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>1.6</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>80</td>
<td>67-121</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>10.8</td>
<td>13</td>
<td>ug/L</td>
<td>8151A</td>
<td>83</td>
<td>53-142</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>0.87</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>87</td>
<td>66-126</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>2.6</td>
<td>3</td>
<td>ug/L</td>
<td>8151A</td>
<td>87</td>
<td>63-123</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>1.8</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>90</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>0.89</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>89</td>
<td>69-123</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>0.72</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>72</td>
<td>48-114</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>0.86</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>86</td>
<td>48-168</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8151W_160314</td>
<td>TRICLOPYR</td>
<td>0.96</td>
<td>ug/L</td>
<td>8151A</td>
<td>96</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,1 - DICHLOROETHANE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>TRICHLOROETHANE</td>
<td>4.7</td>
<td>ug/L</td>
<td>8260C</td>
<td>118</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>4.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>120</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,2 - DICHLOROETHANE (ortho)</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,2 - DICHLOROETHANE</td>
<td>4.5</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>4.5</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>4.5</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>4.6</td>
<td>ug/L</td>
<td>8260C</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>4.5</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>4.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>120</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>4.7</td>
<td>ug/L</td>
<td>8260C</td>
<td>118</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>BENZENE</td>
<td>4.5</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>BROMOBENZENE</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>BROMOCHLOROMETHANE</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>BROMODICHLOROMETHANE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>BROMOFORM</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>BROMOMETHANE</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>CARBON TETRACHLORIDE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>CHLOROBENZENE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>CHLOROETHANE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160217</td>
<td>CHLOROFORM</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = \(\frac{\text{Result of Analysis}}{\text{True Value}} \times 100 \)

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: **16-03235**
Report Date: **03/21/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160217</td>
<td>CHLOROMETHANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1.2 - DICHLOROETHENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1.3 - DICHLOROPROPENE</td>
<td>4.5</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOCHLOROMETHANE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>4.5</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLOORODIFLUOROMETHANE</td>
<td>4.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LE</td>
<td>LFB</td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYLBENZENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.P- XYLENE</td>
<td>8.4</td>
<td>8</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>4.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>118</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLBENZENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>4.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>118</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYLTOLUENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLBENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLBENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLEUENE</td>
<td>4.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1.2 - DICHLOROETHENE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1.3 - DICHLOROPROPENE</td>
<td>4.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>118</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Reagent Blank

Reference Number: 16-03235
Report Date: 03/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160222A</td>
<td>CALCIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160222W</td>
<td>ARSENIC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160223</td>
<td>MERCURY</td>
<td>ND</td>
<td>mg/L</td>
<td>245.1</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160212A</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>ND</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>ND</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160212</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160216</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 03/21/16
Report Date: 03/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits* Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160222A</td>
<td>CALCIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>200.8_160222W</td>
<td>ARSENIC</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.0017</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>8081W_160218</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4' - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4' - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte (BHC - GAMMA)</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8081W_160218</td>
<td>LINDANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8081W_160218</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8081W_160218</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>2,4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>2,4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte (SILVEX)</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8151W_160314</td>
<td>2,4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>2,4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160314</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

\% Recovery = \((\text{Result of Analysis}/\text{True Value}) \times 100\)

NA = Indicates \% Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160217</td>
<td>0 1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1,1 - TRICHLOROTHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1,1,2 - TETRACHLOROTHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1,2 - TRICHLOROTHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1,2,2 - TETRACHLOROTHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits* Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160217</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M,P-XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-03235</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160212</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160216</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>ND</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>0-3</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPHOS_160216 0</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>TURB_160212 0</td>
<td>TURBIDITY</td>
<td>ND</td>
<td>NTU</td>
<td>180.1</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
</tbody>
</table>

Notation:

\[\text{% Recovery} = \frac{\text{Result of Analysis}}{\text{True Value}} \times 100 \]

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample
Reference Number: **16-03235**
Report Date: **03/21/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160222A</td>
<td>0 IRON</td>
<td>2.00</td>
<td>2</td>
<td>mg/L</td>
<td>200.7</td>
<td>100</td>
<td>95-105</td>
<td>QCS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0 MANGANESE</td>
<td>2.02</td>
<td>2</td>
<td>mg/L</td>
<td>200.7</td>
<td>101</td>
<td>95-105</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 CALCIUM</td>
<td>19.6</td>
<td>20</td>
<td>mg/L</td>
<td>200.7</td>
<td>98</td>
<td>95-105</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160222W</td>
<td>0 ARSENIC</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0 BARIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 CADMIUM</td>
<td>0.042</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 CHROMIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 COPPER</td>
<td>0.042</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 LEAD</td>
<td>0.039</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 SELENIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 SILVER</td>
<td>0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ZINC</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160223</td>
<td>0 MERCURY</td>
<td>0.00253</td>
<td>0.00265</td>
<td>mg/L</td>
<td>245.1</td>
<td>95</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>COLOR_160212</td>
<td>0 COLOR</td>
<td>10</td>
<td>10</td>
<td>CU</td>
<td>SM2120 B</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>I160212A</td>
<td>0 CHLORIDE</td>
<td>6</td>
<td>6</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0 FLUORIDE</td>
<td>3.87</td>
<td>4</td>
<td>mg/L</td>
<td>300.0</td>
<td>97</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 SULFATE</td>
<td>29.6</td>
<td>30</td>
<td>mg/L</td>
<td>300.0</td>
<td>99</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160212</td>
<td>0 ORTHO-PHOSPHATE</td>
<td>0.46</td>
<td>0.49</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>94</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TDS_160216</td>
<td>0 TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>498</td>
<td>500</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160216</td>
<td>0 TOTAL PHOSPHORUS</td>
<td>0.036</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TURB_160212</td>
<td>0 TURBIDITY</td>
<td>0.98</td>
<td>1.00</td>
<td>NTU</td>
<td>180.1</td>
<td>98</td>
<td>80-120</td>
<td>QCS</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Notation:
% Recovery = \((\text{Result of Analysis})/\text{(True Value)}) \times 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE DEPENDENT QUALITY CONTROL REPORT

Duplicate, Matrix Spike/Matrix Spike Duplicate and Confirmation Result Report

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate Result</th>
<th>QC</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160222A</td>
<td></td>
<td>IRON</td>
<td>0.009</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANGANESE</td>
<td>0.005</td>
<td></td>
<td>15.1</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>200.8_160222WW</td>
<td></td>
<td>ARSENIC</td>
<td>0.00051</td>
<td></td>
<td>8.2</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td></td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>0.004</td>
<td></td>
<td>28.6</td>
<td>0-20</td>
<td>IEV</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>0.226</td>
<td></td>
<td>0.9</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.00072</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>ND</td>
<td></td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td></td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARSENIC</td>
<td>0.005</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td></td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>0.005</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>0.0072</td>
<td></td>
<td>3.1</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.0011</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td></td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZINC</td>
<td>0.017</td>
<td></td>
<td>16.2</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARSENIC</td>
<td>0.00077</td>
<td></td>
<td>11.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>0.00024</td>
<td></td>
<td>4.1</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>0.003</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>0.028</td>
<td></td>
<td>3.5</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.0015</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>0.00094</td>
<td></td>
<td>6.2</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>0.0042</td>
<td></td>
<td>30.1</td>
<td>0-20</td>
<td>IEV</td>
<td>DUP</td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>QC</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>245.1_160223</td>
<td></td>
<td>ZINC</td>
<td>0.096</td>
<td>mg/L</td>
<td>1.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7786</td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7845</td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>8151W_160218</td>
<td></td>
<td>24-D</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7592</td>
<td></td>
<td>2,4 - DB</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td></td>
<td>2,4,5 - TP (SILVEK)</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7594</td>
<td></td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7595</td>
<td></td>
<td>3.5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7596</td>
<td></td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7597</td>
<td></td>
<td>BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7598</td>
<td></td>
<td>DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7599</td>
<td></td>
<td>DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7599</td>
<td></td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7599</td>
<td></td>
<td>DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7599</td>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7599</td>
<td></td>
<td>PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>7599</td>
<td></td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>COLOR_160212</td>
<td></td>
<td>COLOR</td>
<td>ND</td>
<td>Color Units</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160212A</td>
<td></td>
<td>CHLORIDE</td>
<td>38.6</td>
<td>mg/L</td>
<td>0.3</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>NO3NO2_160212</td>
<td></td>
<td>NITRATE-N</td>
<td>6.96</td>
<td>mg/L</td>
<td>4.4</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160212</td>
<td></td>
<td>ORTHO-PHOSPHATE</td>
<td>0.40</td>
<td>mg/L</td>
<td>7.2</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>PH_160212</td>
<td></td>
<td>HYDROGEN ION (pH)</td>
<td>7.38</td>
<td>pH Units</td>
<td>0.4</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160216</td>
<td></td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>433</td>
<td>mg/L</td>
<td>0.7</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160216</td>
<td></td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>184</td>
<td>mg/L</td>
<td>1.1</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPHOS_160216</td>
<td>7194</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.171</td>
<td>0.171</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7293</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.029</td>
<td>0.030</td>
<td>mg/L</td>
<td>3.4</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7302</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.039</td>
<td>0.037</td>
<td>mg/L</td>
<td>5.3</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160212</td>
<td>7592</td>
<td>TURBIDITY</td>
<td>0.18</td>
<td>0.19</td>
<td>NTU</td>
<td>5.4</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7638</td>
<td>TURBIDITY</td>
<td>5.87</td>
<td>5.88</td>
<td>NTU</td>
<td>0.2</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NA = Indicates %RPD could not be calculated

%RPD = Relative Percent Difference

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Laboratory Fortified Matrix (MS)

200.7_160222A

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7764</td>
<td>IRON</td>
<td>0.009</td>
<td>0.52</td>
<td>0.50 mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7764</td>
<td>MANGANESE</td>
<td>0.005</td>
<td>0.531</td>
<td>0.50 mg/L</td>
<td>105</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

200.8_160222WW

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7375</td>
<td>ARSENIC</td>
<td>0.00051</td>
<td>0.025</td>
<td>0.025 mg/L</td>
<td>98</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7375</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.025</td>
<td>0.025 mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7375</td>
<td>CHROMIUM</td>
<td>0.0004</td>
<td>0.0256</td>
<td>0.025 mg/L</td>
<td>101</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7375</td>
<td>COPPER</td>
<td>0.226</td>
<td>0.252</td>
<td>0.025 mg/L</td>
<td>104</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7375</td>
<td>LEAD</td>
<td>0.00072</td>
<td>0.025</td>
<td>0.025 mg/L</td>
<td>97</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7375</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.023</td>
<td>0.025 mg/L</td>
<td>92</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7375</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0126</td>
<td>0.0125 mg/L</td>
<td>101</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7627</td>
<td>ARSENIC</td>
<td>0.003</td>
<td>0.028</td>
<td>0.025 mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7627</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.025</td>
<td>0.025 mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7627</td>
<td>CHROMIUM</td>
<td>0.003</td>
<td>0.029</td>
<td>0.025 mg/L</td>
<td>104</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7627</td>
<td>COPPER</td>
<td>0.0033</td>
<td>0.030</td>
<td>0.025 mg/L</td>
<td>107</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7627</td>
<td>LEAD</td>
<td>0.0011</td>
<td>0.02515</td>
<td>0.025 mg/L</td>
<td>96</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7627</td>
<td>SILVER</td>
<td>ND</td>
<td>0.013</td>
<td>0.0125 mg/L</td>
<td>104</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7627</td>
<td>ZINC</td>
<td>0.017</td>
<td>0.037</td>
<td>0.025 mg/L</td>
<td>80</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7632</td>
<td>ARSENIC</td>
<td>0.00077</td>
<td>0.025</td>
<td>0.025 mg/L</td>
<td>97</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7632</td>
<td>CADMIUM</td>
<td>0.00024</td>
<td>0.0253</td>
<td>0.025 mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7632</td>
<td>CHROMIUM</td>
<td>0.003</td>
<td>0.028</td>
<td>0.025 mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7632</td>
<td>COPPER</td>
<td>0.028</td>
<td>0.057</td>
<td>0.025 mg/L</td>
<td>116</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7632</td>
<td>LEAD</td>
<td>0.0015</td>
<td>0.0253</td>
<td>0.025 mg/L</td>
<td>95</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7632</td>
<td>SELENIUM</td>
<td>0.00094</td>
<td>0.024</td>
<td>0.025 mg/L</td>
<td>92</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7632</td>
<td>SILVER</td>
<td>0.00042</td>
<td>0.013</td>
<td>0.0125 mg/L</td>
<td>101</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7632</td>
<td>ZINC</td>
<td>0.096</td>
<td>0.123</td>
<td>0.025 mg/L</td>
<td>108</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

245.1_160223

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7598</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00170</td>
<td>0.00173 0.00167 mg/L</td>
<td>102 104</td>
<td>70-130 1.7</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7788</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00173</td>
<td>0.00169 0.00167 mg/L</td>
<td>104 101</td>
<td>70-130 2.3</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7845</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00173</td>
<td>0.00171 0.00167 mg/L</td>
<td>104 102</td>
<td>70-130 1.2</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8081W_160218

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7595</td>
<td>4.4' - DDD</td>
<td>ND</td>
<td>0.43 0.45 0.5 ug/L</td>
<td>86 90</td>
<td>78-132 4.5</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7595</td>
<td>4.4' - DDE</td>
<td>ND</td>
<td>0.45 0.46 0.5 ug/L</td>
<td>90 92</td>
<td>73-127 2.2</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample Name</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7595</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td>0.49</td>
<td>0.52</td>
<td>0.5 ug/L</td>
<td>98</td>
<td>104</td>
<td>56-158</td>
<td>5.9</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>ALDRIN</td>
<td>ND</td>
<td>0.43</td>
<td>0.46</td>
<td>0.5 ug/L</td>
<td>86</td>
<td>92</td>
<td>68-128</td>
<td>6.7</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td>0.44</td>
<td>0.47</td>
<td>0.5 ug/L</td>
<td>88</td>
<td>94</td>
<td>70-130</td>
<td>6.6</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td>0.45</td>
<td>0.48</td>
<td>0.5 ug/L</td>
<td>90</td>
<td>96</td>
<td>37-134</td>
<td>6.5</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td>0.42</td>
<td>0.45</td>
<td>0.5 ug/L</td>
<td>84</td>
<td>90</td>
<td>17-147</td>
<td>6.9</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td>0.46</td>
<td>0.49</td>
<td>0.5 ug/L</td>
<td>92</td>
<td>98</td>
<td>32-127</td>
<td>6.3</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>DIELDRIN</td>
<td>ND</td>
<td>0.46</td>
<td>0.51</td>
<td>0.5 ug/L</td>
<td>92</td>
<td>102</td>
<td>74-134</td>
<td>10.3</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td>0.44</td>
<td>0.47</td>
<td>0.5 ug/L</td>
<td>88</td>
<td>94</td>
<td>67-133</td>
<td>6.6</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td>0.42</td>
<td>0.45</td>
<td>0.5 ug/L</td>
<td>84</td>
<td>90</td>
<td>64-142</td>
<td>6.9</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td>0.44</td>
<td>0.47</td>
<td>0.5 ug/L</td>
<td>88</td>
<td>94</td>
<td>71-143</td>
<td>6.6</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>ENDRIN</td>
<td>ND</td>
<td>0.45</td>
<td>0.47</td>
<td>0.5 ug/L</td>
<td>90</td>
<td>94</td>
<td>30-147</td>
<td>4.3</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td>0.43</td>
<td>0.48</td>
<td>0.5 ug/L</td>
<td>86</td>
<td>96</td>
<td>70-130</td>
<td>11.0</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td>0.43</td>
<td>0.45</td>
<td>0.5 ug/L</td>
<td>86</td>
<td>90</td>
<td>70-130</td>
<td>4.5</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td>0.47</td>
<td>0.5</td>
<td>0.5 ug/L</td>
<td>94</td>
<td>100</td>
<td>74-124</td>
<td>6.2</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>0.48</td>
<td>0.5</td>
<td>0.5 ug/L</td>
<td>96</td>
<td>100</td>
<td>61-133</td>
<td>4.1</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td>0.47</td>
<td>0.49</td>
<td>0.5 ug/L</td>
<td>94</td>
<td>98</td>
<td>73-127</td>
<td>4.2</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td>0.45</td>
<td>0.48</td>
<td>0.5 ug/L</td>
<td>90</td>
<td>96</td>
<td>19-140</td>
<td>6.5</td>
<td>0-0</td>
</tr>
<tr>
<td>7595</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>0.44</td>
<td>0.46</td>
<td>0.5 ug/L</td>
<td>88</td>
<td>92</td>
<td>41-157</td>
<td>4.4</td>
<td>0-0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample Name</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8151W_160218</td>
<td>2,4 - D</td>
<td>ND</td>
<td>2.23</td>
<td></td>
<td>2 ug/L</td>
<td>112</td>
<td>NA</td>
<td>60-120</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>2,4 DB</td>
<td>ND</td>
<td>7.85</td>
<td></td>
<td>8 ug/L</td>
<td>98</td>
<td>NA</td>
<td>49-134</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td>1 ug/L</td>
<td>113</td>
<td>NA</td>
<td>68-122</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>2,4,5 T</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td>1 ug/L</td>
<td>112</td>
<td>NA</td>
<td>62-128</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>0.99</td>
<td></td>
<td>1 ug/L</td>
<td>99</td>
<td>NA</td>
<td>65-125</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>BENTAZON</td>
<td>ND</td>
<td>2.22</td>
<td></td>
<td>2 ug/L</td>
<td>111</td>
<td>NA</td>
<td>67-121</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>DALAPON</td>
<td>ND</td>
<td>15.1</td>
<td></td>
<td>13 ug/L</td>
<td>116</td>
<td>NA</td>
<td>53-421</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>DICAMB A</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td>1 ug/L</td>
<td>104</td>
<td>NA</td>
<td>66-126</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>3.25</td>
<td></td>
<td>3 ug/L</td>
<td>108</td>
<td>NA</td>
<td>63-123</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>DINOSEB</td>
<td>ND</td>
<td>1.52</td>
<td></td>
<td>2 ug/L</td>
<td>76</td>
<td>NA</td>
<td>73-127</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td>1 ug/L</td>
<td>102</td>
<td>NA</td>
<td>69-123</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>PICLORAM</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td>1 ug/L</td>
<td>106</td>
<td>NA</td>
<td>48-114</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>8151W_160218</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td>1 ug/L</td>
<td>105</td>
<td>NA</td>
<td>48-168</td>
<td>NA</td>
<td>0-20</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>Limits*</th>
<th>%RPD</th>
<th>Limits*</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7593</td>
<td>2.4 DB</td>
<td></td>
<td>ND</td>
<td>7.8</td>
<td>8</td>
<td>ug/L</td>
<td>98</td>
<td>NA</td>
<td>49-134</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>2.4,5 TP (SILVEX)</td>
<td></td>
<td>ND</td>
<td>0.93</td>
<td>1</td>
<td>ug/L</td>
<td>93</td>
<td>NA</td>
<td>68-122</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>2.4,5 T</td>
<td></td>
<td>ND</td>
<td>0.87</td>
<td>1</td>
<td>ug/L</td>
<td>87</td>
<td>NA</td>
<td>62-128</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>ACIFLUORFEN</td>
<td></td>
<td>ND</td>
<td>0.8</td>
<td>1</td>
<td>ug/L</td>
<td>80</td>
<td>NA</td>
<td>65-125</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>BENTAZON</td>
<td></td>
<td>ND</td>
<td>1.8</td>
<td>2</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>67-121</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>DALAPON</td>
<td></td>
<td>ND</td>
<td>11.4</td>
<td>13</td>
<td>ug/L</td>
<td>88</td>
<td>NA</td>
<td>53-421</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>DICAMBA</td>
<td></td>
<td>ND</td>
<td>0.84</td>
<td>1</td>
<td>ug/L</td>
<td>84</td>
<td>NA</td>
<td>66-126</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>DICHLORPROP</td>
<td></td>
<td>ND</td>
<td>2.4</td>
<td>3</td>
<td>ug/L</td>
<td>80</td>
<td>NA</td>
<td>63-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>DINOSEB</td>
<td></td>
<td>ND</td>
<td>1.9</td>
<td>2</td>
<td>ug/L</td>
<td>95</td>
<td>NA</td>
<td>73-127</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>PENTACHLOROPHENOL</td>
<td></td>
<td>ND</td>
<td>0.96</td>
<td>1</td>
<td>ug/L</td>
<td>96</td>
<td>NA</td>
<td>69-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>PICLORAM</td>
<td></td>
<td>ND</td>
<td>0.53</td>
<td>1</td>
<td>ug/L</td>
<td>53</td>
<td>NA</td>
<td>48-114</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>TOTAL DCPA</td>
<td></td>
<td>ND</td>
<td>0.9</td>
<td>1</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>48-168</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td>TRICLOPYR</td>
<td></td>
<td>ND</td>
<td>0.93</td>
<td>1</td>
<td>ug/L</td>
<td>93</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7593</td>
<td></td>
</tr>
<tr>
<td>160212A</td>
<td></td>
</tr>
<tr>
<td>7510</td>
<td>CHLORIDE</td>
<td></td>
<td>38.6</td>
<td>38.8</td>
<td>1</td>
<td>mg/L</td>
<td>20</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>IS</td>
<td></td>
</tr>
<tr>
<td>7592</td>
<td>NITRATE-N</td>
<td></td>
<td>6.96</td>
<td>7.06</td>
<td>7.03</td>
<td>0.5</td>
<td>20</td>
<td>14</td>
<td>80-120</td>
<td>35.3</td>
<td>0-20</td>
<td>IM</td>
<td></td>
</tr>
<tr>
<td>7447</td>
<td>ORTHO-PHOSPHATE</td>
<td></td>
<td>0.40</td>
<td>1.36</td>
<td>1.40</td>
<td>1.00</td>
<td>96</td>
<td>100</td>
<td>70-130</td>
<td>4.1</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7592</td>
<td>ORTHO-PHOSPHATE</td>
<td></td>
<td>0.09</td>
<td>1.07</td>
<td>1.09</td>
<td>1.00</td>
<td>98</td>
<td>100</td>
<td>70-130</td>
<td>2.0</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7194</td>
<td>TOTAL PHOSPHORUS</td>
<td></td>
<td>0.171</td>
<td>0.208</td>
<td>0.195</td>
<td>0.050</td>
<td>74</td>
<td>48</td>
<td>70-130</td>
<td>42.6</td>
<td>0-20</td>
<td>IM</td>
<td></td>
</tr>
<tr>
<td>7293</td>
<td>TOTAL PHOSPHORUS</td>
<td></td>
<td>0.029</td>
<td>0.073</td>
<td>0.077</td>
<td>0.050</td>
<td>88</td>
<td>96</td>
<td>70-130</td>
<td>8.7</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>7302</td>
<td>TOTAL PHOSPHORUS</td>
<td></td>
<td>0.039</td>
<td>0.093</td>
<td>0.086</td>
<td>0.050</td>
<td>108</td>
<td>94</td>
<td>70-130</td>
<td>13.9</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
Qualifier Definitions

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H5</td>
<td>This test is specified to be performed in the field within 15 minutes of sampling; sample was received and analyzed past the regulatory holding time.</td>
</tr>
<tr>
<td>IEV</td>
<td>Acceptance criteria do not apply to estimated values</td>
</tr>
<tr>
<td>IM</td>
<td>Matrix induced bias assumed</td>
</tr>
<tr>
<td>IS</td>
<td>The ratio of the spike concentration to sample background was too low to meet performance criteria</td>
</tr>
<tr>
<td>J</td>
<td>Indicates an estimated concentration. This occurs when an analyte concentration is below the calibration curve but is above the method detection limit.</td>
</tr>
<tr>
<td>LE</td>
<td>The end calibration verification for this compound was below the acceptance limit. There were no sample detections and there was adequate sensitivity at the reporting limit. No further action taken with this sample batch.</td>
</tr>
<tr>
<td>LR</td>
<td>Low recovery can not be accounted for. However, there is adequate sensitivity to detect the compound at the lower PQL. No sample detections so no further action for this analysis batch.</td>
</tr>
</tbody>
</table>

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Location</th>
<th>2/11/16 20CC</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>2/11/16 1200</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID:

- Sample 1: 16-03235
- Sample 2: 12-03235
- Sample 3: 17-03235
- Sample 4: 18-03235
- Sample 5: 19-03235
- Sample 6: 20-03235
- Sample 7: 21-03235
- Sample 8: 22-03235
- Sample 9: 23-03235
- Sample 10: 24-03235

Sample Information:

- **Sample Date:** 2/11/16
- **Sample Time:** 1200
- **Sample Location:**
 - Sample 1: Location 1
 - Sample 2: Location 2
 - Sample 3: Location 3
 - Sample 4: Location 4
 - Sample 5: Location 5
 - Sample 6: Location 6
 - Sample 7: Location 7
 - Sample 8: Location 8
 - Sample 9: Location 9
 - Sample 10: Location 10

Sample Analysis Request:

- **Analysis Requested:** Other
- **Other Analysis:**
 - Project Name: Other Analysis
 - Description: Other Analysis
 - Method: Other Analysis
 - Sample Type: Other Analysis
 - Date: Other Analysis

Sample Form:

- Chain of Custody & Labels Agree
- Evidence of Cooling
- Customer Status Intact
- Sample Received Initial
- Sample Received Initail
- Sample Received Initial
- Sample Received Initial
- Sample Received Initial

Sample Form Instructions:

- **Instructions:**
 - Enter number of containers
 - For each sample location, enter the required analysis type
 - Use one line per sample location
 - Include the sample name, location, and date
 - Include the turn around time required
 - Include the analyst name
 - Include the date and time
 - Include the sample number
 - Include the sample type
 - Include the sample description
 - Include the sample analysis
 - Include the sample date
 - Include the sample time
 - Include the sample location

Sample Analysis Request Form:

- **Analysis Requested:** Other
- **Other Analysis:**
 - Project Name: Other Analysis
 - Description: Other Analysis
 - Method: Other Analysis
 - Sample Type: Other Analysis
 - Date: Other Analysis

Sample Analysis Request Form Instructions:

- **Instructions:**
 - Enter number of containers
 - For each sample location, enter the required analysis type
 - Use one line per sample location
 - Include the sample name, location, and date
 - Include the turn around time required
 - Include the analyst name
 - Include the date and time
 - Include the sample number
 - Include the sample type
 - Include the sample description
 - Include the sample analysis
 - Include the sample date
 - Include the sample time
 - Include the sample location

Sample Analysis Request Form Notes:

- **Notes:**
 - Include any additional notes or comments about the sample
 - Include any special instructions or requirements for the sample
 - Include any contact information for the person handling the sample

Sample Analysis Request Form Contact Information:

- **Contact Name:** Other Analysis
- **Contact Phone:** Other Analysis
- **Contact Email:** Other Analysis
- **Contact Address:** Other Analysis
- **Contact City:** Other Analysis
- **Contact State:** Other Analysis
- **Contact Zip:** Other Analysis
- **Contact Relationship:** Other Analysis
- **Contact Title:** Other Analysis
- **Contact Notes:** Other Analysis

Sample Analysis Request Form Additional Information:

- **Additional Information:**
 - Include any additional information related to the sample
 - Include any additional information related to the analysis
 - Include any additional information related to the sample form
<table>
<thead>
<tr>
<th>Total Containers</th>
<th>Email</th>
<th>Fax</th>
<th>Phone</th>
<th>Sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructions

1. Use one line per sample location.
2. Be specific in test requests.
3. New test results, each meta-individual.
4. Check off analyses to be performed.
5. Enter number of containers for each sample location.

Analyses Requested

- **Other**
- **ORPA / CERCLA**
- **Close Water Act**
- **Safe Drinking Water Act**
- **CERCLA Regulatory Program**

Sample Information

- **Sample Requested (Must Include Fax or Email)**
- **Sample Temp. Requested (Must Include Fax or Email)**
- **Sample Received Intact**
- **Evidence of Cooling**
- **Evidence of Cooling**
- **Temp. of Water**
- **S. Soil Water**
- **SW - Surface Water**
- **GW - Ground Water**
- **DW - Drinking Water**

Chain of Custody

- **Sample No.**
- **Received By**
- **Date**
- **Time**
- **Returned By**
- **Date**
- **Time**

Additional Information

- **Comments**
February 29, 2016

Vista Work Order No. 1600124

Mr. Steven Patten
Walla Walla Basin Watershed Council
810 S. Main Street
Milton-Freewater, OR 97862

Dear Mr. Patten,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on February 12, 2016. This sample set was analyzed on a standard turn-around time, under your Project Name 'Locher Road'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director
Sample Condition on Receipt:

Four groundwater samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1668C

These samples were extracted and analyzed for 209 PCB congeners by EPA Method 1668C using a ZB-1 GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. PCB-11 was detected at 6.90 pg/L in the Method Blank. No other analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Narrative</td>
<td>1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Sample Inventory</td>
<td>4</td>
</tr>
<tr>
<td>Analytical Results</td>
<td>5</td>
</tr>
<tr>
<td>Qualifiers</td>
<td>28</td>
</tr>
<tr>
<td>Certifications</td>
<td>29</td>
</tr>
<tr>
<td>Sample Receipt</td>
<td>32</td>
</tr>
</tbody>
</table>
Sample Inventory Report

<table>
<thead>
<tr>
<th>Vista Sample ID</th>
<th>Client Sample ID</th>
<th>Sampled</th>
<th>Received</th>
<th>Components/Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600124-01</td>
<td>GW-70</td>
<td>11-Feb-16 08:50</td>
<td>12-Feb-16 09:36</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600124-02</td>
<td>GW-71</td>
<td>11-Feb-16 10:10</td>
<td>12-Feb-16 09:36</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600124-03</td>
<td>GW-72</td>
<td>11-Feb-16 09:30</td>
<td>12-Feb-16 09:36</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600124-04</td>
<td>CANAL</td>
<td>11-Feb-16 10:45</td>
<td>12-Feb-16 09:36</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
</tbody>
</table>
ANALYTICAL RESULTS
Sample ID: Method Blank

Sample ID: E PA Method 1668C
Matrix: Aqueous
Sample Size: 1.00 L
QC Batch: B6B0104
Date Extracted: 23-Feb-2016 8:12
Lab Sample: B6B0104-BLK1
Date Analyzed: 24-Feb-16 17:16
Column: ZB-1
Analyst: MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>1.32</td>
<td></td>
<td></td>
<td>PCB-43/49</td>
<td>ND</td>
<td>0.899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.31</td>
<td></td>
<td></td>
<td>PCB-44</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
<td>PCB-45</td>
<td>ND</td>
<td>0.983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>4.51</td>
<td></td>
<td></td>
<td>PCB-46</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>3.54</td>
<td></td>
<td></td>
<td>PCB-47</td>
<td>ND</td>
<td>0.815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>3.63</td>
<td></td>
<td></td>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>3.59</td>
<td></td>
<td></td>
<td>PCB-50</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>6.90</td>
<td></td>
<td></td>
<td></td>
<td>PCB-51</td>
<td>ND</td>
<td>0.881</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.29</td>
<td></td>
<td></td>
<td>PCB-52</td>
<td>0.929</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>2.84</td>
<td></td>
<td></td>
<td>PCB-53</td>
<td>ND</td>
<td>0.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>2.90</td>
<td></td>
<td></td>
<td>PCB-54</td>
<td>ND</td>
<td>0.776</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>0.855</td>
<td></td>
<td></td>
<td>PCB-55</td>
<td>ND</td>
<td>0.593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.780</td>
<td></td>
<td></td>
<td>PCB-56/60</td>
<td>ND</td>
<td>0.660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
<td>PCB-57</td>
<td>ND</td>
<td>0.662</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.949</td>
<td></td>
<td></td>
<td>PCB-58</td>
<td>ND</td>
<td>0.653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>0.601</td>
<td></td>
<td></td>
<td>PCB-61/70</td>
<td>ND</td>
<td>0.659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.598</td>
<td></td>
<td></td>
<td>PCB-62</td>
<td>ND</td>
<td>0.719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.575</td>
<td></td>
<td></td>
<td>PCB-63</td>
<td>ND</td>
<td>0.638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.574</td>
<td></td>
<td></td>
<td>PCB-65</td>
<td>ND</td>
<td>0.742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.634</td>
<td></td>
<td></td>
<td>PCB-66/76</td>
<td>ND</td>
<td>0.629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.562</td>
<td></td>
<td></td>
<td>PCB-67</td>
<td>ND</td>
<td>0.680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>ND</td>
<td>0.706</td>
<td></td>
<td></td>
<td>PCB-68</td>
<td>ND</td>
<td>0.607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.575</td>
<td></td>
<td></td>
<td>PCB-73</td>
<td>ND</td>
<td>0.725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.600</td>
<td></td>
<td></td>
<td>PCB-74</td>
<td>ND</td>
<td>0.612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>ND</td>
<td>0.698</td>
<td></td>
<td></td>
<td>PCB-77</td>
<td>ND</td>
<td>0.523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.535</td>
<td></td>
<td></td>
<td>PCB-78</td>
<td>ND</td>
<td>0.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.553</td>
<td></td>
<td></td>
<td>PCB-79</td>
<td>ND</td>
<td>0.629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.535</td>
<td></td>
<td></td>
<td>PCB-80</td>
<td>ND</td>
<td>0.551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.515</td>
<td></td>
<td></td>
<td>PCB-81</td>
<td>ND</td>
<td>0.516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.560</td>
<td></td>
<td></td>
<td>PCB-82</td>
<td>ND</td>
<td>2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.551</td>
<td></td>
<td></td>
<td>PCB-83</td>
<td>ND</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
<td>PCB-84/92</td>
<td>ND</td>
<td>1.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>ND</td>
<td>0.730</td>
<td></td>
<td></td>
<td>PCB-85/116</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>0.790</td>
<td></td>
<td></td>
<td>PCB-86</td>
<td>ND</td>
<td>2.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: Method Blank

Matrix: Aqueous
Sample Size: 1.00 L
QC Batch: B6B0104
Date Extracted: 23-Feb-2016 8:12
Lab Sample: B6B0104-BLK1
Date Analyzed: 24-Feb-16 17:16
Column: ZB-1
Analyst: MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>2.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.839</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.887</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-125</td>
<td>ND</td>
<td>0.955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.941</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>1.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte
PCB-133/142
PCB-134/143
PCB-135
PCB-136
PCB-137
PCB-138/163/164
PCB-139/149
PCB-140
PCB-141
PCB-142
PCB-143
PCB-144
PCB-145
PCB-146/165
PCB-147
PCB-148
PCB-149
PCB-150
PCB-151
PCB-152
PCB-153
PCB-154
PCB-155
PCB-156
PCB-157
PCB-158/160
PCB-159
PCB-160
PCB-161
PCB-162
PCB-163
PCB-164
PCB-165
PCB-166
PCB-167
PCB-168
PCB-169
PCB-170
PCB-171
PCB-172
PCB-173
PCB-174
PCB-175

Qualifiers

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: Method Blank

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.851</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.763</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>6.90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- DL - Sample specific estimated detection limit
- EMPC - Estimated maximum possible concentration
- LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 13C-PCB-1</td>
<td>76.8</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>83.3</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>74.7</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>90.4</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>80.2</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>79.0</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>97.2</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>85.9</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>109</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>90.5</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>90.9</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>76.4</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>95.9</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>109</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>95.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>105</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>91.8</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>103</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>97.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>84.9</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>124</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>118</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>106</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>109</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>126</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>125</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>106</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>105</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>102</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>88.3</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>108</td>
<td>10-145</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/L)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Limits</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>39.7</td>
<td>1000</td>
<td>3.97</td>
<td>60 - 135</td>
<td>IS 13C-PCB-1</td>
<td>86.2</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-3</td>
<td>40.5</td>
<td>1000</td>
<td>4.05</td>
<td>60 - 135</td>
<td>IS 13C-PCB-3</td>
<td>89.1</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>88.2</td>
<td>2000</td>
<td>4.41</td>
<td>60 - 135</td>
<td>IS 13C-PCB-4</td>
<td>79.2</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-15</td>
<td>46.4</td>
<td>1000</td>
<td>4.64</td>
<td>60 - 135</td>
<td>IS 13C-PCB-9</td>
<td>84.1</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-19</td>
<td>49.3</td>
<td>1000</td>
<td>4.93</td>
<td>60 - 135</td>
<td>IS 13C-PCB-11</td>
<td>88.7</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-37</td>
<td>50.5</td>
<td>1000</td>
<td>5.05</td>
<td>60 - 135</td>
<td>IS 13C-PCB-19</td>
<td>79.2</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-54</td>
<td>50.3</td>
<td>1000</td>
<td>5.03</td>
<td>60 - 135</td>
<td>IS 13C-PCB-28</td>
<td>80.0</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-77</td>
<td>46.6</td>
<td>1000</td>
<td>4.66</td>
<td>60 - 135</td>
<td>IS 13C-PCB-32</td>
<td>84.6</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-81</td>
<td>46.0</td>
<td>1000</td>
<td>4.60</td>
<td>60 - 135</td>
<td>IS 13C-PCB-37</td>
<td>96.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-104</td>
<td>47.7</td>
<td>1000</td>
<td>4.77</td>
<td>60 - 135</td>
<td>IS 13C-PCB-47</td>
<td>84.0</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-105</td>
<td>43.1</td>
<td>1000</td>
<td>4.31</td>
<td>60 - 135</td>
<td>IS 13C-PCB-52</td>
<td>88.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>94.0</td>
<td>2000</td>
<td>4.70</td>
<td>60 - 135</td>
<td>IS 13C-PCB-54</td>
<td>75.9</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-114</td>
<td>45.7</td>
<td>1000</td>
<td>4.57</td>
<td>60 - 135</td>
<td>IS 13C-PCB-70</td>
<td>91.8</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-123</td>
<td>48.8</td>
<td>1000</td>
<td>4.88</td>
<td>60 - 135</td>
<td>IS 13C-PCB-77</td>
<td>105</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-126</td>
<td>44.9</td>
<td>1000</td>
<td>4.49</td>
<td>60 - 135</td>
<td>IS 13C-PCB-80</td>
<td>93.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-155</td>
<td>46.6</td>
<td>1000</td>
<td>4.66</td>
<td>60 - 135</td>
<td>IS 13C-PCB-81</td>
<td>97.3</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-156</td>
<td>46.8</td>
<td>1000</td>
<td>4.68</td>
<td>60 - 135</td>
<td>IS 13C-PCB-95</td>
<td>89.9</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-157</td>
<td>48.0</td>
<td>1000</td>
<td>4.80</td>
<td>60 - 135</td>
<td>IS 13C-PCB-97</td>
<td>98.0</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-167</td>
<td>48.0</td>
<td>1000</td>
<td>4.80</td>
<td>60 - 135</td>
<td>IS 13C-PCB-101</td>
<td>93.6</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-169</td>
<td>49.4</td>
<td>1000</td>
<td>4.94</td>
<td>60 - 135</td>
<td>IS 13C-PCB-104</td>
<td>80.8</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-188</td>
<td>48.0</td>
<td>1000</td>
<td>4.80</td>
<td>60 - 135</td>
<td>IS 13C-PCB-105</td>
<td>118</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-189</td>
<td>48.5</td>
<td>1000</td>
<td>4.85</td>
<td>60 - 135</td>
<td>IS 13C-PCB-114</td>
<td>112</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-202</td>
<td>48.2</td>
<td>1000</td>
<td>4.82</td>
<td>60 - 135</td>
<td>IS 13C-PCB-118</td>
<td>102</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-205</td>
<td>48.5</td>
<td>1000</td>
<td>4.85</td>
<td>60 - 135</td>
<td>IS 13C-PCB-123</td>
<td>103</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-206</td>
<td>50.7</td>
<td>1000</td>
<td>5.07</td>
<td>60 - 135</td>
<td>IS 13C-PCB-126</td>
<td>121</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-208</td>
<td>52.2</td>
<td>1000</td>
<td>5.22</td>
<td>60 - 135</td>
<td>IS 13C-PCB-127</td>
<td>118</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-209</td>
<td>47.9</td>
<td>1000</td>
<td>4.79</td>
<td>60 - 135</td>
<td>IS 13C-PCB-138</td>
<td>101</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-141</td>
<td>100</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-153</td>
<td>97.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-155</td>
<td>82.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-156</td>
<td>102</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-157</td>
<td>99.1</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-159</td>
<td>100</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-167</td>
<td>102</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-169</td>
<td>105</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-170</td>
<td>92.1</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-180</td>
<td>91.1</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-188</td>
<td>84.9</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-189</td>
<td>96.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-194</td>
<td>95.5</td>
<td>40 - 145</td>
</tr>
<tr>
<td>Analyte</td>
<td>Amt Found (pg/L)</td>
<td>Spike Amt</td>
<td>%R</td>
<td>Limits</td>
<td>Labeled Standard</td>
<td>%R</td>
<td>LCL-UCL</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----</td>
<td>--------</td>
<td>-----------------</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>IS 13C-PCB-202</td>
<td>83.4</td>
<td></td>
<td></td>
<td>40 - 145</td>
<td>13C-PCB-202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 13C-PCB-206</td>
<td>93.9</td>
<td></td>
<td></td>
<td>40 - 145</td>
<td>13C-PCB-206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 13C-PCB-208</td>
<td>78.7</td>
<td></td>
<td></td>
<td>40 - 145</td>
<td>13C-PCB-208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 13C-PCB-209</td>
<td>95.1</td>
<td></td>
<td></td>
<td>40 - 145</td>
<td>13C-PCB-209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS 13C-PCB-79</td>
<td>98.0</td>
<td></td>
<td></td>
<td>40 - 145</td>
<td>13C-PCB-79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS 13C-PCB-178</td>
<td>90.5</td>
<td></td>
<td></td>
<td>40 - 145</td>
<td>13C-PCB-178</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCL-UCL = Lower control limit - upper control limit
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 8:50

Sample Data
- **Matrix:** Groundwater
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600124-01
- **Date Received:** 12-Feb-2016 9:36
- **QC Batch:** B6B0104
- **Date Extracted:** 23-Feb-2016 8:12
- **Date Analyzed:** 24-Feb-16 18:21
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>17.4</td>
<td></td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>5.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>39.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>72.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>6.18</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>8.31</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td></td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td></td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>29.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>15.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>43.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>6.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>26.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td></td>
<td>0.589</td>
<td>J</td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>3.71</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>2.68</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td></td>
<td>4.67</td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td></td>
<td>0.589</td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td></td>
<td>0.549</td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>25.6</td>
<td></td>
<td>0.548</td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td></td>
<td>0.548</td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td></td>
<td>0.571</td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td></td>
<td>0.552</td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>4.21</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td></td>
<td>0.578</td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td></td>
<td>0.569</td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>1.83</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>6.90</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>2.49</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>5.87</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-44</td>
<td>8.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>2.48</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-46</td>
<td>0.867</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>2.78</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>2.31</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>1.22</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>7.19</td>
<td></td>
<td>J,B</td>
<td></td>
</tr>
<tr>
<td>PCB-53</td>
<td>2.37</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>0.790</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>0.578</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>2.41</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>0.674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>0.664</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>4.50</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-62</td>
<td>0.741</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>0.649</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>0.764</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>2.97</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>0.692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>0.625</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>0.754</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>1.88</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>0.553</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>0.624</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>0.613</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>0.537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>0.570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>2.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>1.74</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td></td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>2.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td></td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td></td>
<td>1.90</td>
<td></td>
</tr>
</tbody>
</table>

- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td></td>
<td>1.85</td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td></td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td></td>
<td>1.98</td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td></td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td></td>
<td>2.01</td>
<td></td>
<td>PCB-138/163/164</td>
<td>1.47</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td></td>
<td>1.89</td>
<td></td>
<td>PCB-139/149</td>
<td>ND</td>
<td></td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>1.96</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td></td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td></td>
<td>1.50</td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td></td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td></td>
<td>1.66</td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td></td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>1.44</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td></td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td></td>
<td>1.70</td>
<td></td>
<td>PCB-146/165</td>
<td>ND</td>
<td></td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td></td>
<td>1.69</td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td></td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td></td>
<td>1.29</td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td></td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td></td>
<td>0.710</td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td></td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td></td>
<td>1.35</td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td></td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td></td>
<td>1.14</td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td></td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td></td>
<td>1.53</td>
<td></td>
<td>PCB-153</td>
<td>1.48</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>2.33</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td></td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td></td>
<td>1.16</td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td></td>
<td>0.997</td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td></td>
<td>1.37</td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td></td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td></td>
<td>0.766</td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td></td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td></td>
<td>1.15</td>
<td></td>
<td>PCB-158/160</td>
<td>ND</td>
<td></td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td></td>
<td>1.09</td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td></td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td></td>
<td>1.21</td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td></td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td></td>
<td>0.912</td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td></td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td></td>
<td>1.21</td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td></td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td></td>
<td>1.16</td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td></td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td></td>
<td>0.801</td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td></td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td></td>
<td>0.780</td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td></td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td></td>
<td>1.43</td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td></td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td></td>
<td>1.83</td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td></td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td></td>
<td>2.03</td>
<td></td>
<td>PCB-174</td>
<td>ND</td>
<td></td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td></td>
<td>1.91</td>
<td></td>
<td>PCB-175</td>
<td>ND</td>
<td></td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td></td>
<td>1.44</td>
<td></td>
<td>PCB-176</td>
<td>ND</td>
<td></td>
<td>0.834</td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td></td>
<td>1.77</td>
<td></td>
<td>PCB-177</td>
<td>ND</td>
<td></td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td></td>
<td>1.73</td>
<td></td>
<td>PCB-178</td>
<td>ND</td>
<td></td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td></td>
<td>1.50</td>
<td></td>
<td>PCB-179</td>
<td>ND</td>
<td></td>
<td>0.872</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: GW-70

Sample Data
- **Matrix:** Groundwater
- **Sample Size:** 1.02 L

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 8:50

Laboratory Data
- **Lab Sample:** 1600124-01
- **Date Received:** 12-Feb-2016 9:36
- **QC Batch:** B6B0104
- **Date Extracted:** 23-Feb-2016 8:12
- **Date Analyzed:** 24-Feb-16 18:21
- **Column:** ZB-1
- **Analyst:** MAS

Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.844</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>2.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>2.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte	**Conc. (pg/L)**	**DL**	**EMPC**	**Qualifiers**
Total monoCB | 22.5 | | | |
Total diCB | 154 | | B | |
Total triCB | 200 | 205 | | |
Total tetraCB | 55.4 | 56.3 | B | |
Total pentaCB | 7.46 | 10.8 | | |
Total hexaCB | 2.95 | 4.26 | B | |
Total heptaCB | ND | 1.41 | | |

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: GW-70
EPA Method 1668C

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 8:50

Sample Data
- **Matrix:** Groundwater
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600124-01
- **Date Received:** 12-Feb-2016 9:36
- **QC Batch:** B6B0104
- **Date Extracted:** 23-Feb-2016 8:12
- **Date Analyzed:** 24-Feb-2016 18:21
- **Column:** ZB-1
- **Analyst:** MAS

Labeled Standard

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1 IS</td>
<td>86.5</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>90.3</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>79.3</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>90.6</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>84.6</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>81.6</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>91.4</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>85.5</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>102.0</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>92.4</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>93.1</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>81.0</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>97.4</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>106.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>97.8</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>102.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>95.4</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>102.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>99.3</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>88.9</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>120.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>117.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>105.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>110.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>126.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>121.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>104.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>103.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>103.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>92.4</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>106.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>102.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>104.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>105.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>107.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-170</td>
<td>97.2</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>97.7</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>93.7</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>98.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>99.5</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>90.4</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>98.4</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>83.9</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>103.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-79 CRS</td>
<td>99.0</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>92.7</td>
<td>10</td>
<td>145</td>
</tr>
</tbody>
</table>

Notes:
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 10:10

Sample Data
- **Matrix:** Groundwater
- **Sample Size:** 1.03 L

Laboratory Data
- **Lab Sample:** 1600124-02
- **Date Received:** 12-Feb-2016 9:36
- **QC Batch:** B6B0104
- **Date Analyzed:** 23-Feb-2016 9:36
- **Date Extracted:** 24-Feb-16 20:26
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration Table

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>12.1</td>
<td>1.12</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.12</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>4.18</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>50.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>9.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>4.40</td>
<td></td>
<td>J</td>
<td>B</td>
</tr>
<tr>
<td>PCB-11</td>
<td>6.86</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.33</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>2.87</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>7.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>7.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>3.14</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-20/21</td>
<td>11.7</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>6.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.661</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>1.66</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>1.27</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>2.77</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.661</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.460</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.615</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.617</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.596</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>1.42</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.624</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.614</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>1.29</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-41/64</td>
<td>2.72</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>0.995</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>2.19</td>
<td></td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.29</td>
<td></td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>1.89</td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td>0.972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.44</td>
<td></td>
<td></td>
<td>PCB-138/163/164</td>
<td>1.01</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.29</td>
<td></td>
<td></td>
<td>PCB-139/149</td>
<td>1.17</td>
<td>J, B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.50</td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.80</td>
<td></td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td>0.991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.95</td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>1.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.83</td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>2.04</td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>0.970</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>2.03</td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.705</td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>1.44</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.80</td>
<td></td>
<td></td>
<td>PCB-153</td>
<td>1.09</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.29</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.71</td>
<td></td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td>0.706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.778</td>
<td></td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td>0.762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.35</td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>0.729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>0.724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.47</td>
<td></td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>0.775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.926</td>
<td></td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td>0.744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>0.773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.33</td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>0.866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.837</td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td>0.726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.792</td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td>0.693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.855</td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td>0.745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>0.913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>ND</td>
<td>0.783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
<td>PCB-175</td>
<td>ND</td>
<td>0.759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.938</td>
<td></td>
<td></td>
<td>PCB-176</td>
<td>ND</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
<td>PCB-177</td>
<td>ND</td>
<td>0.796</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
<td>PCB-178</td>
<td>ND</td>
<td>0.739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.75</td>
<td></td>
<td></td>
<td>PCB-179</td>
<td>ND</td>
<td>0.571</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample Data
- **Sample ID:** GW-71
- **Matrix:** Groundwater
- **Sample Size:** 1.03 L

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 10:10

Laboratory Data
- **Lab Sample:** 1600124-02
- **Date Received:** 12-Feb-2016 9:36
- **QC Batch:** B6B0104
- **Date Extracted:** 23-Feb-2016 8:12
- **Date Analyzed:** 24-Feb-2016 19:26
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.575</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.579</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.854</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>107</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Total triCB</td>
<td>95.0</td>
<td>96.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>20.1</td>
<td>22.3</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>2.73</td>
<td>4.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>3.26</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.913</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualifiers:
- **DL:** Sample specific estimated detection limit
- **EMPC:** Estimated maximum possible concentration
- **LCL-UCL:** Lower control limit - upper control limit

Work Order: 1600124
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 13C-PCB-1</td>
<td>89.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>90.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>80.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>89.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>83.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>81.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>85.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>84.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>102</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>86.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>86.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>76.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>95.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>108</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>94.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>92.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>96.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>83.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>124</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>116</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>110</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>127</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>124</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>88.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>108</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: GW-71
Client Data:
Name: Walla Walla Basin Watershed Council
Project: Locher Road
Date Collected: 11-Feb-2016 10:10
Sample Data:
Matrix: Groundwater
Sample Size: 1.03 L
Laboratory Data:
Lab Sample: 1600124-02
QC Batch: B6B0104
Date Received: 12-Feb-2016 9:36
Date Extracted: 23-Feb-2016 8:12
Date Analyzed: 24-Feb-16 19:26
Column: ZB-1
Analyst: MAS
Results:
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-170</td>
<td>95.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>95.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>89.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>96.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>88.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>97.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>89.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>98.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>CRS 13C-PCB-79</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>96.0</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Client Data

- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 9:30

Sample Data

- **Matrix:** Groundwater
- **Sample Size:** 1.03 L

Laboratory Data

- **Lab Sample:** 1600124-03
- **Date Received:** 12-Feb-2016 9:36
- **QC Batch:** B6B0104
- **Date Analyzed:** 24-Feb-16 20:31
- **Column:** ZB-1
- **Analyst:** MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>Qualifiers</th>
<th>DL</th>
<th>EMPC</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>Qualifiers</th>
<th>DL</th>
<th>EMPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
<td>PCB-44</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>0.949</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-45</td>
<td>2.19</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-3</td>
<td>4.33</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-46</td>
<td>1.07</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>33.1</td>
<td></td>
<td></td>
<td></td>
<td>PCB-47</td>
<td>2.63</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>56.8</td>
<td></td>
<td></td>
<td></td>
<td>PCB-48/75</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
<td>PCB-50</td>
<td>ND</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>5.15</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-51</td>
<td>1.17</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-11</td>
<td>9.58</td>
<td></td>
<td></td>
<td>B</td>
<td>PCB-52/69</td>
<td>5.40</td>
<td></td>
<td></td>
<td>J,B</td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.71</td>
<td></td>
<td></td>
<td>PCB-53</td>
<td>1.93</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.19</td>
<td></td>
<td></td>
<td>PCB-54</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>9.59</td>
<td></td>
<td></td>
<td></td>
<td>PCB-55</td>
<td>ND</td>
<td>0.778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td>PCB-56/60</td>
<td>2.25</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-17</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td>PCB-57</td>
<td>ND</td>
<td>0.865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>30.1</td>
<td></td>
<td></td>
<td></td>
<td>PCB-58</td>
<td>ND</td>
<td>0.852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>4.57</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-61/70</td>
<td>3.77</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
<td>PCB-62</td>
<td>ND</td>
<td>0.941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
<td>PCB-63</td>
<td>ND</td>
<td>0.833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.740</td>
<td></td>
<td></td>
<td>PCB-65</td>
<td>ND</td>
<td>0.970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.48</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-66/76</td>
<td>2.66</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>2.04</td>
<td></td>
<td></td>
<td>PCB-67</td>
<td>ND</td>
<td>0.887</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>4.26</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-68</td>
<td>ND</td>
<td>0.793</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
<td>PCB-73</td>
<td>ND</td>
<td>0.961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.740</td>
<td></td>
<td></td>
<td>PCB-74</td>
<td>ND</td>
<td>1.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.611</td>
<td></td>
<td></td>
<td>PCB-77</td>
<td>ND</td>
<td>0.736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
<td>PCB-78</td>
<td>ND</td>
<td>0.783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.688</td>
<td></td>
<td></td>
<td>PCB-79</td>
<td>ND</td>
<td>0.825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.723</td>
<td></td>
<td></td>
<td>PCB-80</td>
<td>ND</td>
<td>0.722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.699</td>
<td></td>
<td></td>
<td>PCB-81</td>
<td>ND</td>
<td>0.715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>3.17</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-82</td>
<td>ND</td>
<td>2.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.731</td>
<td></td>
<td>J</td>
<td>PCB-83</td>
<td>ND</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.720</td>
<td></td>
<td>J</td>
<td>PCB-84/92</td>
<td>ND</td>
<td>2.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>1.34</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-85/116</td>
<td>ND</td>
<td>2.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>5.48</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-86</td>
<td>ND</td>
<td>2.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>2.58</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>4.13</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-88/91</td>
<td>ND</td>
<td>2.63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 9:30

Sample Data
- **Matrix:** Groundwater
- **Sample Size:** 1.03 L

Laboratory Data
- **Lab Sample:** 1600124-03
- **QC Batch:** B6B0104
- **Date Analyzed:** 24-Feb-2016 20:31
- **Column:** ZB-1
- **Analyst:** MAS
- **Date Received:** 12-Feb-2016 9:36
- **Date Extracted:** 23-Feb-2016 8:12

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>2.06</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>2.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>2.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>2.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>0.728</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.60</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>2.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>1.27</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>1.37</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>2.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>ND</td>
<td>2.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>2.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>ND</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>ND</td>
<td>2.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>1.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>ND</td>
<td>0.880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>ND</td>
<td>0.916</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.874</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>ND</td>
<td>0.908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>ND</td>
<td>0.907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>0.911</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>ND</td>
<td>0.905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>ND</td>
<td>0.855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>ND</td>
<td>0.920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>ND</td>
<td>0.966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>ND</td>
<td>0.877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>0.983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.660</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: GW-72

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 9:30

Sample Data
- **Matrix:** Groundwater
- **Sample Size:** 1.03 L

Laboratory Data
- **Lab Sample:** 1600124-03
- **QC Batch:** B6B0104
- **Date Analyzed:** 24-Feb-16 20:31
- **Date Received:** 12-Feb-2016 9:36
- **Date Extracted:** 23-Feb-2016 8:12
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration Table

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>0.859</td>
<td></td>
<td>0.859</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>0.923</td>
<td></td>
<td>0.923</td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>0.808</td>
<td></td>
<td>0.808</td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>0.751</td>
<td></td>
<td>0.751</td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>0.686</td>
<td></td>
<td>0.686</td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>0.886</td>
<td></td>
<td>0.886</td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>0.630</td>
<td></td>
<td>0.630</td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>0.604</td>
<td></td>
<td>0.604</td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>0.687</td>
<td></td>
<td>0.687</td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>0.673</td>
<td></td>
<td>0.673</td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>0.669</td>
<td></td>
<td>0.669</td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>0.716</td>
<td></td>
<td>0.716</td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>0.672</td>
<td></td>
<td>0.672</td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.976</td>
<td></td>
<td>0.976</td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>1.45</td>
<td></td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>1.56</td>
<td></td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>1.11</td>
<td></td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>1.71</td>
<td></td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>1.74</td>
<td></td>
<td>1.74</td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>1.25</td>
<td></td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>1.18</td>
<td></td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>1.27</td>
<td></td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>1.20</td>
<td></td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>1.02</td>
<td></td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>1.73</td>
<td></td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>0.702</td>
<td></td>
<td>0.702</td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>0.712</td>
<td></td>
<td>0.712</td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>2.86</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>19.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>124</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>148</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>42.6</td>
<td>45.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>4.39</td>
<td>8.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>2.65</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Total PCB:** 344
- **Total octaCB:** ND 1.74
- **Total nonaCB:** ND 1.73
- **DecaCB:** 2.86
- **B**

EMPC: Estimated maximum possible concentration
DL: Sample specific estimated detection limit
LCL-UCL: Lower control limit - upper control limit
Sample ID: GW-72

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 9:30

Sample Data
- **Matrix:** Groundwater
- **Sample Size:** 1.03 L

Laboratory Data
- **Lab Sample:** 1600124-03
- **Date Received:** 12-Feb-2016 9:36
- **QC Batch:** B6B0104
- **Date Extracted:** 23-Feb-2016 8:12
- **Date Analyzed:** 24-Feb-16 20:31
- **Column:** ZB-1
- **Analyst:** MAS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>90.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>92.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>83.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>90.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>85.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>82.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>80.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>85.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>97.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>90.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>92.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>79.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>96.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>96.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>94.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>123</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>118</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>108</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>114</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>130</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>126</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>98.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>90.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>109</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>108</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Labeled Standard
- **13C-PCB-170:** 96.4 10 - 145
- **13C-PCB-180:** 96.9 10 - 145
- **13C-PCB-188:** 92.0 10 - 145
- **13C-PCB-189:** 97.5 10 - 145
- **13C-PCB-194:** 99.9 10 - 145
- **13C-PCB-202:** 90.4 10 - 145
- **13C-PCB-206:** 97.0 10 - 145
- **13C-PCB-208:** 88.2 10 - 145
- **13C-PCB-209:** 99.0 10 - 145
- **13C-PCB-79:** 101 10 - 145
- **13C-PCB-178:** 92.2 10 - 145

Qualifiers
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>1.23</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.28</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>1.28</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>4.47</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>3.55</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>3.65</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>3.60</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>9.89</td>
<td>B</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.55</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.06</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>3.12</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>2.35</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.898</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>1.11</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>1.07</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>0.552</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.549</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.596</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.662</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.657</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.583</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>ND</td>
<td>1.06</td>
<td>0.629</td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.596</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.676</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>ND</td>
<td>0.788</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.554</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.584</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.565</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.544</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.591</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.582</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>1.14</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>ND</td>
<td>0.901</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>0.793</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>ND</td>
<td>0.578</td>
<td>1.33</td>
<td></td>
</tr>
</tbody>
</table>
Sample ID: CANAL

<table>
<thead>
<tr>
<th>Client Data</th>
<th>Sample Data</th>
<th>Laboratory Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Walla Walla Basin Watershed Council</td>
<td>Matrix: Groundwater</td>
<td>Lab Sample: 1600124-04</td>
</tr>
<tr>
<td>Project: Locher Road</td>
<td>Sample Size: 1.02 L</td>
<td>Date Received: 12-Feb-2016 9:36</td>
</tr>
<tr>
<td>Date Collected: 11-Feb-2016 10:45</td>
<td></td>
<td>QC Batch: B6B0104</td>
</tr>
</tbody>
</table>

Sample Data

- **Matrix:** Groundwater
- **Sample Size:** 1.02 L

Laboratory Data

- **Lab Sample:** 1600124-04
- **Date Received:** 12-Feb-2016 9:36
- **QC Batch:** B6B0104
- **Date Analyzed:** 24-Feb-16 21:37
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1.43</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>1.53</td>
<td>0.355</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>1.14</td>
<td>1.18</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.942</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Data

- **QC Batch:** B6B0104
- **Date Extracted:** 23-Feb-2016 8:12
- **Date Analyzed:** 24-Feb-16 21:37
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Conc. (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>1.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>ND</td>
<td>1.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>1.41</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>ND</td>
<td>0.856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>ND</td>
<td>0.899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>ND</td>
<td>0.898</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>ND</td>
<td>0.896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>0.822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>ND</td>
<td>0.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>ND</td>
<td>0.961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.723</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
Sample ID: CANAL

Client Data

- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 10:45

Sample Data

- **Matrix:** Groundwater
- **Sample Size:** 1.02 L

Laboratory Data

- **Lab Sample:** 1600124-04
- **QC Batch:** B6B0104
- **Date Analyzed:** 24-Feb-16 21:37
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Conc. (pg/L) DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.752</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-187</td>
<td>ND</td>
<td>0.661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.829</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.882</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>ND</td>
<td>9.89</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Total triCB</td>
<td>ND</td>
<td>1.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>ND</td>
<td>8.63</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>ND</td>
<td>5.28</td>
<td></td>
<td>5.63</td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td>3.84</td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte Conc. (pg/L) DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octaCB</td>
<td>ND</td>
<td>1.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total nonaCB</td>
<td>ND</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DecaCB</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Total PCB</td>
<td>25.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Locher Road
- **Date Collected:** 11-Feb-2016 10:45

Sample Data
- **Matrix:** Groundwater
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600124-04
- **Date Received:** 12-Feb-2016 9:36
- **QC Batch:** B6B0104
- **Date Extracted:** 23-Feb-2016 8:12
- **Date Analyzed:** 24-Feb-2016 21:37
- **Column:** ZB-1
- **Analyst:** MAS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>83.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>84.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>75.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>86.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>79.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>76.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>97.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>80.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>108</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>86.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>88.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>73.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>94.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>112</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>94.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>89.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>96.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>82.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>122</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>118</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>109</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>111</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>128</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>124</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>88.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>108</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

EMPC: Estimated maximum possible concentration

DL: Sample specific estimated detection limit

LCL-UCL: Lower control limit - upper control limit
DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.
CERTIFICATIONS

<table>
<thead>
<tr>
<th>Accrediting Authority</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Department of Health – ELAP</td>
<td>2892</td>
</tr>
<tr>
<td>DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005</td>
<td>3091.01</td>
</tr>
<tr>
<td>Florida Department of Health</td>
<td>E87777</td>
</tr>
<tr>
<td>Hawaii Department of Health</td>
<td>N/A</td>
</tr>
<tr>
<td>Louisiana Department of Environmental Quality</td>
<td>01977</td>
</tr>
<tr>
<td>Maine Department of Health</td>
<td>2014022</td>
</tr>
<tr>
<td>Nevada Division of Environmental Protection</td>
<td>CA004132016-1</td>
</tr>
<tr>
<td>New Jersey Department of Environmental Protection</td>
<td>CA003</td>
</tr>
<tr>
<td>New York Department of Health</td>
<td>11411</td>
</tr>
<tr>
<td>Oregon Laboratory Accreditation Program</td>
<td>4042-004</td>
</tr>
<tr>
<td>Pennsylvania Department of Environmental Protection</td>
<td>012</td>
</tr>
<tr>
<td>South Carolina Department of Health</td>
<td>87002001</td>
</tr>
<tr>
<td>Tennessee Department of Environmental Quality</td>
<td>TN02996</td>
</tr>
<tr>
<td>Texas Commission on Environmental Quality</td>
<td>T104704189-15-6</td>
</tr>
<tr>
<td>Virginia Department of General Services</td>
<td>7923</td>
</tr>
<tr>
<td>Washington Department of Ecology</td>
<td>C584</td>
</tr>
<tr>
<td>Wisconsin Department of Natural Resources</td>
<td>998036160</td>
</tr>
</tbody>
</table>

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.
NELAP Accredited Test Methods

MATRIX: Air

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Polychlorinated p-Dioxins & Polychlorinated Dibenzofurans</td>
<td>EPA 23</td>
</tr>
</tbody>
</table>

MATRIX: Biological Tissue

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Polychlorinated p-Dioxins & Polychlorinated Dibenzofurans</td>
<td>EPA 23</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>

MATRIX: Drinking Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
</tbody>
</table>

MATRIX: Non-Potable Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Dioxin by GC/HRMS</td>
<td>EPA 613</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
<tr>
<td>MATRIX: Solids</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Description of Test</td>
<td>Method</td>
</tr>
<tr>
<td>Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>
CHAIN OF CUSTODY

Work Order 1600124

Invoice to: Name: CHESS STREET, Company: WINSTON, Address: 810 S. MAIN, City: VANCOUVER, State: WA, Zip: 98662, Ph#: 541-935-2170, Fax#: 541-935-2170

Method of Shipment: UPS

Container(s):

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Location/Sample Description</th>
<th>Z</th>
<th>A</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW-70</td>
<td>2/11/16</td>
<td>8:50</td>
<td>Locher Rd</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW-71</td>
<td>2/11/16</td>
<td>10:10</td>
<td>Locher Rd</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW-72</td>
<td>2/11/16</td>
<td>9:30</td>
<td>Locher Rd</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANAR</td>
<td>2/11/16</td>
<td>10:45</td>
<td>Locher Rd</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Instructions/Comments:

SEND

DOCUMENTATION AND RESULTS TO:

Name: STEVEN PATTON

Company: Loomis WC

Address: 810 S. MAIN

City: VANCOUVER, State: WA, Zip: 98662

Phone: 541-935-2170

Fax: 541-935-2170

Email: steven_patten@loomiswc.com

Matrix Types: DW = Drinking Water, EF = Effluent, PP = Paper/Paper, SD = Sediment, SL = Sludge, SO = Soil, WW = Wastewater, B = Blood/Serum

AQ = Aqueous, O = Other

* Bottle Preservative Type: T = Triosulfate, O = Other

Container Types: A = 1 Liter Amber, G = Glass Jar

P = PUF, T = MMS Train, O = Other

Work Order 1600124

WHITE - ORIGINAL

YELLOW - ARCHIVE

PINK - COPY

Page 32 of 33
SAMPLE LOG-IN CHECKLIST

Vista Project #: 1600124
TAT: Std

<table>
<thead>
<tr>
<th>Samples Arrival:</th>
<th>Date/Time</th>
<th>Initials:</th>
<th>Location:</th>
<th>Shelf/Rack:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>02/12/16</td>
<td>V3B6</td>
<td>WR-2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logged In:</th>
<th>Date/Time</th>
<th>Initials:</th>
<th>Location:</th>
<th>Shelf/Rack:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>02/12/16</td>
<td>V3B6</td>
<td>WR-2</td>
<td>B3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delivered By:</th>
<th>FedEx</th>
<th>UPS</th>
<th>On Trac</th>
<th>DHL</th>
<th>Hand Delivered</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preservation:</th>
<th>Ice</th>
<th>Blue Ice</th>
<th>Dry Ice</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp °C:</th>
<th>3</th>
<th>(uncorrected)</th>
<th></th>
<th>1001</th>
<th>Thermometer ID: IR-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp °C:</td>
<td></td>
<td>(corrected)</td>
<td>Time:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adequate Sample Volume Received?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding Time Acceptable?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Container(s) Intact?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Custody Seals Intact?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Documentation Present?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbill</td>
<td>Trk #</td>
<td>1262E 3F 7011549016</td>
<td></td>
</tr>
<tr>
<td>Sample Container Intact?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Custody Seals Intact?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of Custody / Sample Documentation Present?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC Anomaly/Sample Acceptance Form completed?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If Chlorinated or Drinking Water Samples, Acceptable Preservation?					
Na₂S₂O₃ Preservation Documented?	COC	Sample Container	None		
Shipping Container	Vista	Client	Retain	Return	Dispose

Comments:
April 21, 2016

Mr. Steve Patten
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

RE: 16-07437 - Walla Walla Basin Aquifer Recharge

Dear Mr. Steve Patten,

Your project: Walla Walla Basin Aquifer Recharge, was received on Thursday April 07, 2016.

All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone us at 800 755-9295.

Respectfully

[Signature]

Patrick Miller, MS
QA Officer

Enclosures: Data Report
<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Sample Information</th>
<th>Analytical Method</th>
<th>Notes</th>
<th>Created by</th>
</tr>
</thead>
<tbody>
<tr>
<td>17241</td>
<td>Locher Road - Intake</td>
<td>200.8</td>
<td>High LFB results for Cu and Zn; samples rerun on 4/19/16 for Cu Zn LFB</td>
<td>BJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>results for 4/19/16 acceptable. Confirmation results for 4/19/16</td>
<td></td>
</tr>
</tbody>
</table>
Data Report

Client Name: Walla Walla Basin Watershed Council
Project: Walla Walla Basin Aquifer Recharge
Report Date: 4/21/16

Sample Description: Locher Road - Intake
Sample Date: 4/6/16 10:35 am
Collected By: Steven Patten

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>7.37</td>
<td>0.10</td>
<td></td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>4/7/16</td>
<td>RHF</td>
<td>TURB_160407</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>4/8/16</td>
<td>MMH</td>
<td>2451_160408</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>1.1</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>4/9/16</td>
<td>MMH</td>
<td>I160408A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>4/9/16</td>
<td>MMH</td>
<td>I160408A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>2.1</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>4/9/16</td>
<td>MMH</td>
<td>I160408A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>34.6</td>
<td>5.00</td>
<td></td>
<td>mgCaCO₃/L</td>
<td>1.0</td>
<td>310.2</td>
<td>4/8/16</td>
<td>ANP</td>
<td>3102_160408</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.00</td>
<td></td>
<td>mgCaCO₃/L</td>
<td>1.0</td>
<td>310.2</td>
<td>4/8/16</td>
<td>ANP</td>
<td>3102_160408</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-1.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>15</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>4/7/16</td>
<td>RHF</td>
<td>COLOR_160407</td>
<td>pH: 7.5</td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>4/7/16</td>
<td>RHF</td>
<td>ODOR_160407</td>
<td>Temperature: 41.2</td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>76</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>4/7/16</td>
<td>MMH</td>
<td>TDS_160407</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.48</td>
<td>H5</td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>4/7/16</td>
<td>MMH</td>
<td>PH_160407</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>0.28</td>
<td>0.01</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>4/7/16</td>
<td>ANP</td>
<td>NO3NO2_160407</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.04</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>4/7/16</td>
<td>ANP</td>
<td>OPHOS_160407</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td>1.0</td>
<td>SM5540 C</td>
<td>4/8/16</td>
<td>KF</td>
<td>AMTE5540_160406</td>
<td>Analyzed by Amtest</td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>7.2</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>4/13/16</td>
<td>BJ</td>
<td>2007_160413B</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.51</td>
<td>0.05</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>4/13/16</td>
<td>BJ</td>
<td>2007_160413B</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.011</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>4/13/16</td>
<td>BJ</td>
<td>2007_160413B</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00024 J</td>
<td>0.0005</td>
<td>8.1E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>4/13/16</td>
<td>MVP</td>
<td>2008_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.012</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>4/13/16</td>
<td>MVP</td>
<td>2008_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.1E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>4/13/16</td>
<td>MVP</td>
<td>2008_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.0003 J</td>
<td>0.0005</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>4/13/16</td>
<td>MVP</td>
<td>2008_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.002</td>
<td>0.002</td>
<td>8.6E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>4/13/16</td>
<td>MVP</td>
<td>2008_160413WW</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.0002 J</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>4/13/16</td>
<td>MVP</td>
<td>2008_160413WW</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.0022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>4/13/16</td>
<td>MVP</td>
<td>2008_160413WW</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

If you have any questions concerning this report contact us at the above phone number.
Data Report

Sample Description:
Locher Road - GW-70

Lab Number:
17242

Sample Comment:

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Batch</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.98</td>
<td>0.10</td>
<td>NTU</td>
<td></td>
<td></td>
<td>180.1</td>
<td>a</td>
<td>4/7/16</td>
<td>RHF</td>
<td>TURB_160407</td>
<td></td>
</tr>
<tr>
<td>7440-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>4/8/16</td>
<td>MMH</td>
<td>245_1_160408</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>1.3</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>4/8/16</td>
<td>MMH</td>
<td>MCH160408A</td>
<td></td>
</tr>
<tr>
<td>16984-48-6</td>
<td>FLUORIDE</td>
<td>0.14</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>4/8/16</td>
<td>MMH</td>
<td>MCH160408A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>2.6</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>4/8/16</td>
<td>MMH</td>
<td>MCH160408A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>58.1</td>
<td>5.00</td>
<td>mg CaCO3/L</td>
<td></td>
<td></td>
<td>310.2</td>
<td>a</td>
<td>4/8/16</td>
<td>ANP</td>
<td>COLOR_160408</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.00</td>
<td>mg CaCO3/L</td>
<td></td>
<td></td>
<td>310.2</td>
<td>a</td>
<td>4/8/16</td>
<td>ANP</td>
<td>COLOR_160408</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-1.74</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>10</td>
<td>5</td>
<td>Color Units</td>
<td></td>
<td></td>
<td>SM2120 B</td>
<td>a</td>
<td>4/7/16</td>
<td>RHF</td>
<td>COLOR_160407</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td></td>
<td></td>
<td>SM2150</td>
<td>a</td>
<td>4/7/16</td>
<td>RHF</td>
<td>ODOR_160408</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>106</td>
<td>10</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>SM2540 C</td>
<td>a</td>
<td>4/7/16</td>
<td>MMH</td>
<td>TDS_160407</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.20 H5</td>
<td></td>
<td>pH Units</td>
<td></td>
<td></td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>4/7/16</td>
<td>RHF</td>
<td>PH_160407</td>
<td></td>
</tr>
<tr>
<td>14797-55-6</td>
<td>NITRATE-N</td>
<td>0.88</td>
<td>0.01</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-N03 F</td>
<td>a</td>
<td>4/7/16</td>
<td>ANP</td>
<td>NO3_160407</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.13</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>4/7/16</td>
<td>ANP</td>
<td>PHOS_160407</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5450 C</td>
<td>a</td>
<td>4/8/16</td>
<td>AMT</td>
<td>AMTE5540_160406</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>10.5</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.7_160413B</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.11</td>
<td>0.05</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.7_160413B</td>
<td></td>
</tr>
<tr>
<td>7440-96-5</td>
<td>MANGANESE</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.7_160413B</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00044 J</td>
<td></td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.013</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.0025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0025</td>
<td>200.8</td>
<td>0.0025</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0028</td>
<td>0.0025</td>
<td>0.0047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td>1.0</td>
<td>1</td>
<td>MPN/100mL</td>
<td></td>
<td></td>
<td>SM9223</td>
<td>b</td>
<td>4/8/16</td>
<td>CLH</td>
<td>qt_160407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>70.3</td>
<td>1</td>
<td>MPN/100mL</td>
<td></td>
<td></td>
<td>SM9223</td>
<td>b</td>
<td>4/8/16</td>
<td>CLH</td>
<td>qt_160407</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **ND** = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- **PQL** = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **D.F.** - Dilution Factor

Sample Date: 4/6/16 9:50 am
Report Date: 4/21/16
Reference Number: 16-07437
Collected By: Steven Patten

Form: CDrill_2.rpt
Data Report

7723-14-0

TOTAL PHOSPHORUS

0.129

0.010

0.0061

mg/L

1.0

SM4500-P F/SM4500-P B(6)

a

4/11/16

ANP

TPHOS_160411

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.20</td>
<td>0.10</td>
<td>ND</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>4/7/16</td>
<td>RHF</td>
<td>TURB_160407</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>4/8/16</td>
<td>MMH</td>
<td>245.1_160408</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>4.1</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>4/8/16</td>
<td>MMH</td>
<td>160407A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.11</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>4/8/16</td>
<td>MMH</td>
<td>160407A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>24.4</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>4/8/16</td>
<td>MMH</td>
<td>160407A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>117</td>
<td>5.00</td>
<td></td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>4/8/16</td>
<td>ANP</td>
<td>310.2_160408</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.00</td>
<td></td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>4/8/16</td>
<td>ANP</td>
<td>310.2_160408</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIIVITY</td>
<td>-1.21</td>
<td></td>
<td></td>
<td>Bi</td>
<td>1.0</td>
<td>SM203</td>
<td>a</td>
<td>4/19/16</td>
<td>msp</td>
<td>cor_160419</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>9</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>a</td>
<td>4/7/16</td>
<td>RHF</td>
<td>COLOR_160407</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>4/7/16</td>
<td>RHF</td>
<td>ODOR_160407</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>284</td>
<td>10</td>
<td></td>
<td></td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>4/7/16</td>
<td>MMH</td>
<td>TDS_160407</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>6.93</td>
<td>H5</td>
<td></td>
<td></td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>4/7/16</td>
<td>RHF</td>
<td>PH_160407</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>16.1</td>
<td>0.10</td>
<td>0.002</td>
<td>mg/L</td>
<td>10.0</td>
<td>SM4500-NO3 F</td>
<td>a</td>
<td>4/7/16</td>
<td>ANP</td>
<td>NO3NO2_160407</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.09</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>4/7/16</td>
<td>ANP</td>
<td>OPHOS_160407</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5540 C</td>
<td>a</td>
<td>4/7/16</td>
<td>KF</td>
<td>AMTES_160407</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>35.3</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.7_160413B</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.02 J</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.7_160413B</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>ND</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.7_160413B</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00028 J</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.058</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.003</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0015 J</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1.0</td>
<td>1</td>
<td></td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>b</td>
<td>4/8/16</td>
<td>CLH</td>
<td>qt_160407</td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>1.0</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>b</td>
<td>4/8/16</td>
<td>CLH</td>
<td>qt_160407</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.097</td>
<td>0.010</td>
<td>0.0061</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F/SM4500-P B(6)</td>
<td>a</td>
<td>4/12/16</td>
<td>ANP</td>
<td>TPHOS_160412</td>
<td></td>
</tr>
</tbody>
</table>

Sample Description: Locher Road - GW-71

Lab Number: 17243

Sample Date: 4/6/16

11:10 am

Collected By: Steven Patten

- **CAS ID#**
- **Parameter**
- **Result**
- **PQL**
- **MDL**
- **Units**
- **DF**
- **Method**
- **Lab**
- **Analyzed**
- **Analyst**
- **Batch**
- **Comment**

Notes:

- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor
Data Report

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Form:</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURBIDITY</td>
<td>1.23</td>
<td>NTU</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>MERCURY</td>
<td>ND</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>CHLORIDE</td>
<td>1.2</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>FLUORIDE</td>
<td>0.12</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>SULFATE</td>
<td>3.5</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>BICARBONATE</td>
<td>46.7</td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>CARBONATE</td>
<td>ND</td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>CORROSIVITY</td>
<td>-1.87</td>
<td>Si</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>COLOR</td>
<td>8</td>
<td>Color Units</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>ODOR</td>
<td>ND</td>
<td>TON</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>102</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>HYDROGEN ION (pH)</td>
<td>7.18</td>
<td>H5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>NITRATE-N</td>
<td>1.97</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>ORTHO-PHOSPHATE</td>
<td>0.10</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>SURFACTANTS</td>
<td>0.031</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>CALCIUM</td>
<td>10.2</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>IRON</td>
<td>0.12</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>MANGANESE</td>
<td>0.0027</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>ARSENIC</td>
<td>0.0005</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>BARIUM</td>
<td>0.014</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>CADMIUM</td>
<td>0.00009J</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>0.00013J</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>COPPER</td>
<td>0.0015J</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>LEAD</td>
<td>0.00014J</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>SELENIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>SILVER</td>
<td>ND</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>ZINC</td>
<td>0.0017J</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1.0</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>35.0</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>0.104</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

Form: cRslt_2.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17244
Field ID: Locher Road
Sample Description: GW-72
Matrix: Water
Sample Date: 4/6/16
Extraction Date: 4/13/16
Extraction Method: 3535

Reference Number: 16-07437
Project: Walla Walla Basin Aquifer Re

Report Date: 4/21/16
Date Analyzed: 4/19/16
Analyst: CO
Analytical Method: 8081B
Batch: 8081B_160413
Approved By: pdm.rjk

Authorized by:
Patrick Miller, MSQA Officer

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDS</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
Data Report

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17244
Field ID: Locher Road
Sample Description: GW-72
Matrix: Water
Sample Date: 4/6/16
Extraction Date: 4/12/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOORBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBIEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR 97862

- **Lab Number:** 17244
- **Field ID:** Locher Road
- **Sample Description:** GW-72
- **Matrix:** Water
- **Sample Date:** 4/6/16
- **Extraction Date:** 4/11/16
- **Extraction Method:** 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-68-6</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-90-5</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-58-1</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-16-5</td>
<td>1,2 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,3,5 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-6</td>
<td>1,2,3,5 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROETHANE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109-67-8</td>
<td>1,2,3 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,2,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>1,2,3 - DICHLOROETHANE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128-86-3</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-28-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- NO - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
- Form: c608.rpt

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.0</td>
<td>a</td>
<td>Screening Only</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17243
Field ID: Locher Road
Sample Description: GW-71
Matrix: Water
Sample Date: 4/6/16
Extraction Date: 4/13/16
Extraction Method: 3535

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4’- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4’- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4’ - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR 97862

Lab Number: 17243
Field ID: Locher Road
Sample Description: GW-71
Matrix: Water
Sample Date: 4/6/16
Extraction Date: 4/12/16
Extraction Method: 3510C

Report Date: 4/21/16
Date Analyzed: 4/18/16
Analyst: KAH
Analytical Method: 8151A
Batch: 8151W_160412
Approved By: pdm.rjk

Authorized by: Patrick Miller, MS QA Officer

Results

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4-D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17243
Field ID: Locher Road
Sample Description: GW-71
Matrix: Water
Sample Date: 4/6/16
Extraction Date: 4/11/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOOROTHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,5 - DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
2. ND - indicates the compound was not detected above the PQL or MDL.
3. Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
4. Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
5. D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab Permit QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td>Screening Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
- Screening Only indicates the compound was not detected above the PQL or MDL.
DATA REPORT

Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17242
Field ID: Locher Road
Sample Description: GW-70
Matrix: Water
Sample Date: 4/6/16
Extraction Date: 4/13/16
Extraction Method: 3535

<table>
<thead>
<tr>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Organochlorine Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17242
Field ID: Locher Road
Sample Description: GW-70
Matrix: Water
Sample Date: 4/6/16
Extraction Date: 4/12/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLOORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name:
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number</th>
<th>Field ID</th>
<th>Sample Description</th>
<th>Matrix</th>
<th>Sample Date</th>
<th>Extraction Date</th>
<th>Extraction Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>17242</td>
<td>Locher Road</td>
<td>GW-70</td>
<td>Water</td>
<td>4/6/16</td>
<td>4/11/16</td>
<td>5030B</td>
</tr>
</tbody>
</table>

Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.

D.F. - Dilution Factor.

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56358-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63020-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,4 - DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54173-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14229-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10667-8</td>
<td>1,3,5 - TRIMETHYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59420-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7143-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10886-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7497-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7527-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7525-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17241
Field ID: Locher Road
Sample Description: Intake
Matrix: Surface Water
Sample Date: 4/6/16
Extraction Date: 4/13/16
Extraction Method: 3535

- Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'-DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'-DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'-DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number</th>
<th>Field ID</th>
<th>Sample Description</th>
<th>Matrix</th>
<th>Sample Date</th>
<th>Extraction Date</th>
<th>Extraction Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>17241</td>
<td>Locher Road</td>
<td>Surface Water</td>
<td>Intake</td>
<td>4/6/16</td>
<td>4/12/16</td>
<td>3510C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result</th>
<th>Flag</th>
<th>Units</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td>Compound</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
</tr>
</tbody>
</table>

- **50594-66-1** ACIFLUORFEN 114 ug/L 0.1 0.1 0.06 1.00 a
- **55338-06-3** TRICLOPYR ND ug/L 0.1 0.1 0.06 1.00 a
- **94-75-7** 2,4 - D ND ug/L 0.1 0.1 0.04 1.00 a
- **94-82-6** 2,4 DB ND ug/L 0.8 0.8 0.32 1.00 a
- **93-72-1** 2,4,5 - TP (SILVEX) ND ug/L 0.1 0.1 0.02 1.00 a
- **93-76-5** 2,4,5 T ND ug/L 0.1 0.1 0.01 1.00 a
- **75-99-0** DALAPON ND ug/L 1.3 1.3 0.49 1.00 a
- **1918-00-9** DICAMBA ND ug/L 0.1 0.1 0.01 1.00 a
- **120-36-5** DICHLORPROP ND ug/L 0.1 0.1 0.09 1.00 a
- **88-85-7** DINOSEB ND ug/L 0.1 0.1 0.03 1.00 a
- **87-86-5** PENTACHLOROPHENOL ND ug/L 0.04 0.04 0.02 1.00 a
- **51-36-5** 3,5 - DICHLOROBENZOIC ACID ND ug/L 0.5 0.5 0.08 1.00 a
- **25057-89-4** BENTAZON ND ug/L 0.5 0.5 0.08 1.00 a
- **133-90-4** CHLORAM苯 ND ug/L 0.2 0.2 0.03 1.00 a
- **1861-32-1** TOTAL DCPA ND ug/L 0.1 0.1 0.06 1.00 a
- **1918-02-1** PICLORAM ND ug/L 0.2 0.2 0.04 1.00 a

NOTES:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17241
Field ID: Locher Road
Sample Description: Intake
Matrix: Surface Water
Sample Date: 4/6/16
Extraction Date: 4/11/16
Extraction Method: 5030B

Reference Number: 16-07437
Project: Walla Walla Basin Aquifer Recharge

Report Date: 4/21/16
Date Analyzed: 4/11/16
Analyst: HY
Analytical Method: 8260C
Batch: 8260W_160411
Approved By: pdm, rjk
Authorized by: Patrick Miller, MS QA Officer

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-28-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-26-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-84-3</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-45-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-36-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- NO indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Calibration Check

Reference Number: **16-07437**
Report Date: **04/21/16**

Batch Analyte Result Value Units Method % Recovery Limits* Qualifier Type Comment

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>CALCIUM</td>
<td>10.2</td>
<td>11</td>
<td>mg/L</td>
<td>200.7</td>
<td>93</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.7_160413B</td>
<td>IRON</td>
<td>1.02</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>102</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.7_160413B</td>
<td>MANGANESE</td>
<td>1.07</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>107</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>ARSENIC</td>
<td>0.00101</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>101</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>BARIUM</td>
<td>0.00104</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>CADMIUM</td>
<td>0.0011</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>CHROMIUM</td>
<td>0.00093</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>93</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>COPPER</td>
<td>0.00097</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>97</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>LEAD</td>
<td>0.0011</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>SELENIUM</td>
<td>0.00099</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>SILVER</td>
<td>0.00101</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>101</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>ZINC</td>
<td>0.00109</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>109</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>245.1_160408</td>
<td>MERCURY</td>
<td>0.00196</td>
<td>0.00200</td>
<td>mg/L</td>
<td>245.1</td>
<td>97</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>245.1_160408</td>
<td>MERCURY</td>
<td>0.000186</td>
<td>0.000200</td>
<td>mg/L</td>
<td>245.1</td>
<td>100</td>
<td>85-115</td>
<td>CAL MRL</td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>CHLORIDE</td>
<td>1.08</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>108</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>FLUORIDE</td>
<td>1.06</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>106</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>SULFATE</td>
<td>2.0</td>
<td>2</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>CHLORIDE</td>
<td>1.03</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>103</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>FLUORIDE</td>
<td>1.06</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>106</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>SULFATE</td>
<td>2.0</td>
<td>2</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160407</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.99</td>
<td>1.00</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>99</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>pH_160407</td>
<td>HYDROGEN ION (pH)</td>
<td>7.98</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>pH_160407</td>
<td>HYDROGEN ION (pH)</td>
<td>7.99</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160411</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.099</td>
<td>0.100</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>99</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.099</td>
<td>0.100</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>99</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Calibration Check
Reference Number: **16-07437**
Report Date: **04/21/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURB_160407</td>
<td>TURBIDITY</td>
<td>9.84</td>
<td>10.0</td>
<td>NTU</td>
<td>98</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
</tbody>
</table>

Notation:

\[
\% \text{ Recovery} = \frac{\text{Result of Analysis}}{\text{True Value}} \times 100
\]

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Reference Number: 04/21/16
Report Date: 16-07437
Laboratory Fortified Blank
Report Date: 04/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>0 CALCIUM</td>
<td>12.3</td>
<td>13</td>
<td>mg/L</td>
<td>200.7</td>
<td>95</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 IRON</td>
<td>0.48</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 MANGANESE</td>
<td>0.5</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>0 ARSENIC</td>
<td>0.023</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>92</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BARIUM</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CADMIUM</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHROMIUM</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 COPPER</td>
<td>0.031</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>124</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 LEAD</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SELENIUM</td>
<td>0.0214</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>86</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SILVER</td>
<td>0.013</td>
<td>0.0125</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ZINC</td>
<td>0.031</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>124</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>245.1_160408</td>
<td>0 MERCURY</td>
<td>0.00101</td>
<td>0.00100</td>
<td>mg/L</td>
<td>245.1</td>
<td>101</td>
<td>90-110</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>8151W_160412</td>
<td>0 2,4 - D</td>
<td>2.1</td>
<td>2</td>
<td>µg/L</td>
<td>8151A</td>
<td>105</td>
<td>60-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,4 DB</td>
<td>9.5</td>
<td>8</td>
<td>µg/L</td>
<td>8151A</td>
<td>119</td>
<td>49-136</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,4,5 - TP (SILVEX)</td>
<td>0.99</td>
<td>1</td>
<td>µg/L</td>
<td>8151A</td>
<td>99</td>
<td>68-122</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,4,5 T</td>
<td>1</td>
<td>1</td>
<td>µg/L</td>
<td>8151A</td>
<td>100</td>
<td>62-128</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ACIFLUORFEN</td>
<td>1</td>
<td>1</td>
<td>µg/L</td>
<td>8151A</td>
<td>100</td>
<td>65-125</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BENTAZON</td>
<td>2.2</td>
<td>2</td>
<td>µg/L</td>
<td>8151A</td>
<td>110</td>
<td>67-121</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DALAPON</td>
<td>13</td>
<td>13</td>
<td>µg/L</td>
<td>8151A</td>
<td>100</td>
<td>53-142</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DICAMBA</td>
<td>1.1</td>
<td>1</td>
<td>µg/L</td>
<td>8151A</td>
<td>110</td>
<td>66-126</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DICHLORPROP</td>
<td>3.1</td>
<td>3</td>
<td>µg/L</td>
<td>8151A</td>
<td>103</td>
<td>63-123</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DINOSEB</td>
<td>2.2</td>
<td>2</td>
<td>µg/L</td>
<td>8151A</td>
<td>110</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 PENTACHLOROPHENOL</td>
<td>1</td>
<td>1</td>
<td>µg/L</td>
<td>8151A</td>
<td>100</td>
<td>69-123</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 PICLORAM</td>
<td>0.88</td>
<td>1</td>
<td>µg/L</td>
<td>8151A</td>
<td>88</td>
<td>48-114</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 TOTAL DCDA</td>
<td>0.71</td>
<td>1</td>
<td>µg/L</td>
<td>8151A</td>
<td>71</td>
<td>48-168</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 TRICLOPYR</td>
<td>1</td>
<td>1</td>
<td>µg/L</td>
<td>8151A</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>0 1,1 - DICHLOROETHANE</td>
<td>4.0</td>
<td>4</td>
<td>µg/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROPROPENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>4.6</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROPROPANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPANE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LE</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 16-07437
Report Date: 04/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLOORODIFLUOROMETHANE</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>85</td>
<td>70-130</td>
<td>LE</td>
<td>LFB</td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYL BENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.P-XYLENE</td>
<td>8.3</td>
<td>8</td>
<td>ug/L</td>
<td>8260C</td>
<td>104</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>4.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>85</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLBENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYL TOLUENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLBENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLBENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOOROETHENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>4.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>118</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>CALCIUM</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.7_160413B</td>
<td>IRON</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.7_160413B</td>
<td>MANGANESE</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>ARSENIC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>BARIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>CADMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>COPPER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>LEAD</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>SELENIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>SILVER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>ZINC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160408</td>
<td>MERCURY</td>
<td>ND</td>
<td>245.1</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>SULFATE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>SULFATE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160407</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>SM4500-P F</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160411</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>SM4500-P F</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>SM4500-P F</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

- **Reference Number:** 16-07437
- **Report Date:** 04/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Type</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>0 CALCIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 IRON</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 MANGANESE</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>0 ARSENIC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BARIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CADMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHROMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 COPPER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 LEAD</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SELENIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SILVER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ZINC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160412</td>
<td>0 2,4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 TRICLOPYR</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>0 1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

- % Recovery = (Result of Analysis)/(True Value) * 100
- NA = Indicates % Recovery could not be calculated

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Method Blank

Reference Number: 16-07437

Report Date: 04/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank
Reference Number: **16-07437**
Report Date: **04/21/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYLTOUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 16-07437
Report Date: 04/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPAE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROPROPAE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRIMETHYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-DIBROMO-3-CHLOROPROPAE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M,P-XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Reference Number: 16-07437
Report Date: 04/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>QC Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENe</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
</tr>
<tr>
<td></td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
</tr>
<tr>
<td>OPHOS_160407</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>TDS_160407</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>ND</td>
<td>mg/L</td>
<td>0-3</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160411</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/True Value * 100
NA = Indicates % Recovery could not be calculated.*

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 16-07437
Report Date: 04/21/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery Limits</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURB_160407</td>
<td>TURBIDITY</td>
<td>ND</td>
<td>NTU</td>
<td>180.1</td>
<td>0-0</td>
<td>MB</td>
<td>QC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

- % Recovery = (Result of Analysis)/(True Value) * 100
- NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>IRON</td>
<td>2.08</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.7_160413B</td>
<td>MANGANESE</td>
<td>2.08</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.7_160413B</td>
<td>CALCIUM</td>
<td>19.3</td>
<td>mg/L</td>
<td>200.7</td>
<td>97</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160413W</td>
<td>ARSENIC</td>
<td>0.041</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160413W</td>
<td>BARIUM</td>
<td>0.041</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160413W</td>
<td>CADMIUM</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160413W</td>
<td>CHROMIUM</td>
<td>0.039</td>
<td>mg/L</td>
<td>200.8</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160413W</td>
<td>COPPER</td>
<td>0.041</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160413W</td>
<td>LEAD</td>
<td>0.039</td>
<td>mg/L</td>
<td>200.8</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160413W</td>
<td>SELENIUM</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160413W</td>
<td>SILVER</td>
<td>0.021</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160413W</td>
<td>ZINC</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>245.1_160408</td>
<td>MERCURY</td>
<td>0.00260</td>
<td>mg/L</td>
<td>245.1</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>COLOR_160407</td>
<td>COLOR</td>
<td>10</td>
<td>CU</td>
<td>SM2120 B</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>CHLORIDE</td>
<td>6.1</td>
<td>mg/L</td>
<td>300.0</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>FLUORIDE</td>
<td>4.20</td>
<td>mg/L</td>
<td>300.0</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>SULFATE</td>
<td>30.4</td>
<td>mg/L</td>
<td>300.0</td>
<td>101</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>CHLORIDE</td>
<td>6.1</td>
<td>mg/L</td>
<td>300.0</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>FLUORIDE</td>
<td>4.19</td>
<td>mg/L</td>
<td>300.0</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>SULFATE</td>
<td>30.5</td>
<td>mg/L</td>
<td>300.0</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160407</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.49</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TDS_160407</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>494</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>99</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160411</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.033</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>92</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURB_160407</td>
<td>TURBIDITY</td>
<td>1.01</td>
<td>1.00</td>
<td>NTU</td>
<td>180.1</td>
<td>101</td>
<td>80-120</td>
<td>QCS</td>
</tr>
</tbody>
</table>

Notation:

- \% Recovery = (Result of Analysis)/(True Value) * 100
- NA = Indicates \% Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE DEPENDENT QUALITY CONTROL REPORT

Duplicate, Matrix Spike/Matrix Spike Duplicate and Confirmation Result Report

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate</th>
<th>QC</th>
<th>QC</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>IRON</td>
<td>0.39</td>
<td>0.37</td>
<td></td>
<td></td>
<td>5.3</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>MANGANESE</td>
<td>0.0076</td>
<td>0.0076</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>CALCIUM</td>
<td>35.2</td>
<td>36.3</td>
<td></td>
<td></td>
<td>3.1</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>18031</td>
<td>IRON</td>
<td>0.44</td>
<td>0.41</td>
<td></td>
<td></td>
<td>7.1</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>18031</td>
<td>MANGANESE</td>
<td>0.015</td>
<td>0.014</td>
<td></td>
<td></td>
<td>6.9</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>200.8_160413WW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>ARSENIC</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>BARIUM</td>
<td>0.038</td>
<td>0.039</td>
<td></td>
<td></td>
<td>2.6</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>CADMIUM</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>CHROMIUM</td>
<td>0.0005</td>
<td>0.0005</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>COPPER</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>LEAD</td>
<td>0.00012</td>
<td>0.00013</td>
<td></td>
<td></td>
<td>8.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.0004</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>SILVER</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>17652</td>
<td>ZINC</td>
<td>0.0015</td>
<td>0.002</td>
<td></td>
<td></td>
<td>28.6</td>
<td>0-20</td>
<td>IEV DUP</td>
</tr>
<tr>
<td>18031</td>
<td>ARSENIC</td>
<td>0.006</td>
<td>0.006</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>18031</td>
<td>BARIUM</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>18031</td>
<td>CADMIUM</td>
<td>0.0005</td>
<td>0.0005</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>18031</td>
<td>CHROMIUM</td>
<td>0.075</td>
<td>0.073</td>
<td></td>
<td></td>
<td>2.7</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>18031</td>
<td>COPPER</td>
<td>0.017</td>
<td>0.016</td>
<td></td>
<td></td>
<td>6.1</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>18031</td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.00047</td>
<td></td>
<td></td>
<td>16.1</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>18031</td>
<td>SILVER</td>
<td>0.0014</td>
<td>0.0014</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>18031</td>
<td>ZINC</td>
<td>0.044</td>
<td>0.042</td>
<td></td>
<td></td>
<td>4.7</td>
<td>0-20</td>
<td>DUP</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Duplicate</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16050</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>ND</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17477</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>ND</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>815W_160412</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>2.4 - D</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>2.4 DB</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>2.4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>2.4,5 T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>3.5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>BENTAZON</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>DALAPON</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>DICAMBA</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>DINOSEB</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>PICLORAM</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>ND</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOR_160407</td>
<td></td>
</tr>
<tr>
<td>17230</td>
<td>COLOR</td>
<td>ND</td>
<td>ND</td>
<td>COLOR UNI</td>
<td>COLOR UNI</td>
<td>NA</td>
<td>0-20</td>
<td>ND</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td></td>
</tr>
<tr>
<td>17230</td>
<td>CHLORIDE</td>
<td>2.7</td>
<td>2.7</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17230</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17230</td>
<td>SULFATE</td>
<td>6.6</td>
<td>6.6</td>
<td>mg/L</td>
<td>1.5</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17237</td>
<td>CHLORIDE</td>
<td>2.7</td>
<td>2.7</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17237</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17237</td>
<td>SULFATE</td>
<td>5.8</td>
<td>5.8</td>
<td>mg/L</td>
<td>1.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17313</td>
<td>CHLORIDE</td>
<td>16.1</td>
<td>16.1</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17313</td>
<td>FLUORIDE</td>
<td>0.12</td>
<td>0.12</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17313</td>
<td>SULFATE</td>
<td>16.3</td>
<td>16.3</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17394</td>
<td>CHLORIDE</td>
<td>18</td>
<td>18</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17394</td>
<td>FLUORIDE</td>
<td>0.20</td>
<td>0.19</td>
<td>mg/L</td>
<td>5.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>17726</td>
<td>CHLORIDE</td>
<td>2.8</td>
<td>2.9</td>
<td>mg/L</td>
<td>3.5</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17726</td>
<td>SULFATE</td>
<td>10.6</td>
<td>10.6</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17731</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_160407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17241</td>
<td>NITRATE-N</td>
<td>0.28</td>
<td>0.28</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17241</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.04</td>
<td>0.04</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH_160407</td>
<td>HYDROGEN ION (pH)</td>
<td>6.20</td>
<td>6.22</td>
<td>pH Units</td>
<td>0.3</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17243</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>284</td>
<td>284</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160411</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17241</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.048</td>
<td>0.047</td>
<td>mg/L</td>
<td>2.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.129</td>
<td>0.120</td>
<td>mg/L</td>
<td>7.2</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17550</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.286</td>
<td>0.298</td>
<td>mg/L</td>
<td>4.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17560</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.258</td>
<td>0.231</td>
<td>mg/L</td>
<td>11.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17649</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.705</td>
<td>0.700</td>
<td>mg/L</td>
<td>0.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17151</td>
<td>TURBIDITY</td>
<td>5.09</td>
<td>5.12</td>
<td>NTU</td>
<td>0.6</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch Number</th>
<th>Sample Type</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Spike Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>Laboratory Fortified Matrix (MS)</td>
<td>IRRON</td>
<td>0.39</td>
<td>0.38</td>
<td>0.025</td>
<td>mg/L</td>
<td>-40</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANGANESE</td>
<td>0.0076</td>
<td>0.033</td>
<td>0.025</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRRON</td>
<td>0.44</td>
<td>0.45</td>
<td>0.025</td>
<td>mg/L</td>
<td>40</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANGANESE</td>
<td>0.015</td>
<td>0.040</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>200.8_160413WW</td>
<td></td>
<td>ARSENIC</td>
<td>0.004</td>
<td>0.028</td>
<td>0.025</td>
<td>mg/L</td>
<td>96</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BARIUM</td>
<td>0.038</td>
<td>0.063</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.0241</td>
<td>0.025</td>
<td>mg/L</td>
<td>96</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>0.0005</td>
<td>0.0254</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>0.001</td>
<td>0.0274</td>
<td>0.025</td>
<td>mg/L</td>
<td>106</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.00012</td>
<td>0.0257</td>
<td>0.025</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.023</td>
<td>0.025</td>
<td>mg/L</td>
<td>90</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>0.0128</td>
<td>0.0125</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZINC</td>
<td>0.0015</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>90</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>200.7_160413B</td>
<td></td>
<td>ARSENIC</td>
<td>0.006</td>
<td>0.0315</td>
<td>0.025</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BARIUM</td>
<td>0.004</td>
<td>0.032</td>
<td>0.025</td>
<td>mg/L</td>
<td>112</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>0.0005</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>94</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>0.075</td>
<td>0.103</td>
<td>0.025</td>
<td>mg/L</td>
<td>112</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>0.017</td>
<td>0.042</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>0.0014</td>
<td>0.014</td>
<td>0.0125</td>
<td>mg/L</td>
<td>101</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZINC</td>
<td>0.044</td>
<td>0.066</td>
<td>0.025</td>
<td>mg/L</td>
<td>88</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>245.1_160408</td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00101</td>
<td>0.000978</td>
<td>0.00100 mg/L</td>
<td>101</td>
<td>98</td>
<td>70-130</td>
<td>3.2</td>
</tr>
<tr>
<td>16050</td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00101</td>
<td>0.00101</td>
<td>0.00100 mg/L</td>
<td>101</td>
<td>101</td>
<td>70-130</td>
<td>0.0</td>
</tr>
<tr>
<td>8151W_160412</td>
<td></td>
<td>2,4 - D</td>
<td>ND</td>
<td>2.1</td>
<td>2</td>
<td>ug/L</td>
<td>105</td>
<td>60-120</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>17242</td>
<td></td>
<td>2,4 DB</td>
<td>ND</td>
<td>9.7</td>
<td>8</td>
<td>ug/L</td>
<td>121</td>
<td>49-134</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>17242</td>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>110</td>
<td>68-122</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>17242</td>
<td></td>
<td>2,4,5 T</td>
<td>ND</td>
<td>0.98</td>
<td>1</td>
<td>ug/L</td>
<td>98</td>
<td>62-128</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>17242</td>
<td></td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>110</td>
<td>65-125</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>17242</td>
<td></td>
<td>BENTAZON</td>
<td>ND</td>
<td>1.9</td>
<td>2</td>
<td>ug/L</td>
<td>95</td>
<td>67-121</td>
<td>NA</td>
<td>0-20</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>Limits</th>
<th>%RPD</th>
<th>Limits</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>17242</td>
<td>DALAPON</td>
<td>D</td>
<td>ND</td>
<td>14.8</td>
<td>13</td>
<td>ug/L</td>
<td>114</td>
<td>NA</td>
<td>53-421</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>DICAMBA</td>
<td>D</td>
<td>ND</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>110</td>
<td>NA</td>
<td>66-126</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>DICHLORPROP</td>
<td>D</td>
<td>ND</td>
<td>3.3</td>
<td>3</td>
<td>ug/L</td>
<td>110</td>
<td>NA</td>
<td>63-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>DINOBEN</td>
<td>D</td>
<td>ND</td>
<td>2.2</td>
<td>2</td>
<td>ug/L</td>
<td>110</td>
<td>NA</td>
<td>73-127</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>PENTACHLOROPHENOL</td>
<td>D</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>69-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>PICLORAM</td>
<td>D</td>
<td>ND</td>
<td>0.86</td>
<td>1</td>
<td>ug/L</td>
<td>86</td>
<td>NA</td>
<td>48-114</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>TOTAL DCPA</td>
<td>D</td>
<td>ND</td>
<td>0.81</td>
<td>1</td>
<td>ug/L</td>
<td>81</td>
<td>NA</td>
<td>48-168</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>TRICLOPYR</td>
<td>D</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>I160407A</td>
<td>17230</td>
<td>CHLORIDE</td>
<td>2.7</td>
<td>3.6</td>
<td>1</td>
<td>mg/L</td>
<td>90</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td>CHLORIDE</td>
</tr>
<tr>
<td>17230</td>
<td>FLUORIDE</td>
<td>1.08</td>
<td>1</td>
<td>mg/L</td>
<td>108</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17230</td>
<td>SULFATE</td>
<td>6.7</td>
<td>8.6</td>
<td>2</td>
<td>mg/L</td>
<td>95</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17237</td>
<td>CHLORIDE</td>
<td>2.7</td>
<td>3.7</td>
<td>1</td>
<td>mg/L</td>
<td>100</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17237</td>
<td>FLUORIDE</td>
<td>1.10</td>
<td>1</td>
<td>mg/L</td>
<td>110</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17237</td>
<td>SULFATE</td>
<td>5.9</td>
<td>7.8</td>
<td>2</td>
<td>mg/L</td>
<td>95</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17313</td>
<td>CHLORIDE</td>
<td>16.1</td>
<td>16.7</td>
<td>1</td>
<td>mg/L</td>
<td>60</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17313</td>
<td>FLUORIDE</td>
<td>1.18</td>
<td>1</td>
<td>mg/L</td>
<td>106</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17313</td>
<td>SULFATE</td>
<td>16.3</td>
<td>18.2</td>
<td>2</td>
<td>mg/L</td>
<td>95</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17394</td>
<td>CHLORIDE</td>
<td>18</td>
<td>18.7</td>
<td>1</td>
<td>mg/L</td>
<td>70</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17394</td>
<td>FLUORIDE</td>
<td>1.25</td>
<td>1</td>
<td>mg/L</td>
<td>105</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>17726</td>
<td>CHLORIDE</td>
<td>2.8</td>
<td>3.8</td>
<td>1</td>
<td>mg/L</td>
<td>100</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17726</td>
<td>SULFATE</td>
<td>10.6</td>
<td>12.6</td>
<td>2</td>
<td>mg/L</td>
<td>100</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17731</td>
<td>FLUORIDE</td>
<td>1.08</td>
<td>1</td>
<td>mg/L</td>
<td>108</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_160407</td>
<td>17241</td>
<td>NITRATE-N</td>
<td>0.28</td>
<td>0.80</td>
<td>0.81</td>
<td>0.5 mg/L</td>
<td>104</td>
<td>106</td>
<td>80-120</td>
<td>1.9</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160407</td>
<td>17241</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.04</td>
<td>1.02</td>
<td>1.01</td>
<td>1.0 mg/L</td>
<td>98</td>
<td>97</td>
<td>70-130</td>
<td>1.0</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160411</td>
<td>17241</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.048</td>
<td>0.092</td>
<td>0.095</td>
<td>0.050 mg/L</td>
<td>88</td>
<td>94</td>
<td>70-130</td>
<td>6.6</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.129</td>
<td>0.179</td>
<td>0.168</td>
<td>0.050 mg/L</td>
<td>100</td>
<td>78</td>
<td>70-130</td>
<td>24.7</td>
<td>0-20</td>
<td>INH</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>17550</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.286</td>
<td>0.340</td>
<td>0.332</td>
<td>0.050 mg/L</td>
<td>108</td>
<td>92</td>
<td>70-130</td>
<td>16.0</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17560</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.258</td>
<td>0.326</td>
<td>0.339</td>
<td>0.050 mg/L</td>
<td>136</td>
<td>162</td>
<td>70-130</td>
<td>17.4</td>
<td>0-20</td>
<td>INH</td>
<td>LFM</td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result Spike</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>17649</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.705</td>
<td>0.812</td>
<td>0.808</td>
<td>0.100</td>
<td>mg/L</td>
<td>107</td>
<td>103</td>
<td>70-130</td>
<td>3.8</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H5</td>
<td>This test is specified to be performed in the field within 15 minutes of sampling; sample was received and analyzed past the regulatory holding time.</td>
</tr>
<tr>
<td>IEV</td>
<td>Acceptance criteria do not apply to estimated values</td>
</tr>
<tr>
<td>IM</td>
<td>Matrix induced bias assumed</td>
</tr>
<tr>
<td>INH</td>
<td>The sample was non-homogeneous</td>
</tr>
<tr>
<td>IS</td>
<td>The ratio of the spike concentration to sample background was too low to meet performance criteria</td>
</tr>
<tr>
<td>J</td>
<td>Indicates an estimated concentration. This occurs when an analyte concentration is below the calibration curve but is above the method detection limit.</td>
</tr>
<tr>
<td>LE</td>
<td>The end calibration verification for this compound was below the acceptance limit. There were no sample detections and there was adequate sensitivity at the reporting limit. No further action taken with this sample batch.</td>
</tr>
<tr>
<td>LR</td>
<td>Low recovery can not be accounted for. However, there is adequate sensitivity to detect the compound at the lower PQL. No sample detections so no further action for this analysis batch.</td>
</tr>
</tbody>
</table>

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.
<table>
<thead>
<tr>
<th>Condition Recorded</th>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Medium</th>
<th>Volume</th>
<th>Purpose</th>
<th>Project</th>
<th>Associated Analysis(s)</th>
<th>Analysis Requested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>6</td>
<td>07437</td>
<td>12.24</td>
<td>1979</td>
<td>HS</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>5</td>
<td>07437</td>
<td>12.24</td>
<td>1979</td>
<td>HS</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Instruments

Project
- Agulher Recreacion Water and Soil 2019

Contact Information
- Phone: 541-992-7170
- FAX: 541-992-7179
- Email: agulher@wec.org

Address
- 810 South Main Street
- Willamette Valley, Oregon
- 97382

Analysis Requested
- Please complete all applicable shaded sections.
<table>
<thead>
<tr>
<th>Container Number</th>
<th>Other</th>
<th>RER / CRECLA</th>
<th>Clean Water Act</th>
<th>Site Drilling Water Act</th>
<th>Check Regulator Program</th>
<th>Ref #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instruments

1. Use one line per sample location
2. Be specific in analysis requests
3. New list each metal individually (now) High-Time (50% surrogate)
4. Check all analytes to be performed for each sample location
5. Enter number of containers (Non-REU only)

Chain of Custody / Analysis Request

- Email:
- Phone:
- Address:
- Bill To: Walla Walla Basin Watered Council

Project Details

- Project:
- Site:
- Permit #:
- P.O. Box:
- Fax:
- City:
- Zip:
- Phone:
- Email:
- PO #:
- Ref #: 97282
- Address:
- Bill To: Walla Walla Basin Watered Council

Please complete all applicable shaded sections.
June 7, 2016

Mr. Steve Patten
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

RE: 16-10884 - Aquifer Recharge Water 2016

Dear Mr. Steve Patten,

Your project: Aquifer Recharge Water 2016, was received on Thursday May 12, 2016.

All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone us at 800 755-9295.

Respectfully

[Signature]

Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Enclosures: Data Report
June 7, 2016

Case Narrative

Reference: 16-10884

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Sample Information</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>24774</td>
<td>Locher Road - Intake</td>
<td>Sample Note: Reported to smell of dirt or pond water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Created by: ANP</td>
</tr>
</tbody>
</table>

FORM: CaseNarrative.rpt
Data Report

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City, State: Milton-Freewater, OR 97862

Reference Number: 16-10884
Project: Aquifer Recharge Water
Year: 2016

Date: 6/7/16
Report Date: 5/12/16
Approved by: anp,bj,clc,mvp, mvp

Authorized by: Lawrence J Henderson, PhD
Title: Director of Laboratories, Vice President

Sample Description:

Lab Number: 24774
Sample Comment: Locher Road - Intake

Analytical Results

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>5.32</td>
<td>0.10</td>
<td></td>
<td>NTU</td>
<td>1</td>
<td>180.1</td>
<td>a</td>
<td>TURB_160512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1</td>
<td>245.1</td>
<td>a</td>
<td>MMH_160518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>1.2</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1</td>
<td>300.0</td>
<td>a</td>
<td>MMH_I160512A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1</td>
<td>300.0</td>
<td>a</td>
<td>MMH_I160512A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>2.3</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1</td>
<td>300.0</td>
<td>a</td>
<td>MMH_I160512A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>48.1</td>
<td>5.0</td>
<td></td>
<td>mgCaCO3/L</td>
<td>1</td>
<td>310.2</td>
<td>a</td>
<td>ANP_160516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.0</td>
<td></td>
<td>mgCaCO3/L</td>
<td>1</td>
<td>310.2</td>
<td>a</td>
<td>ANP_160516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>12</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1</td>
<td>SM2120 B</td>
<td>a</td>
<td>RHF_160512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>2.13 N1</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1</td>
<td>SM2150</td>
<td>a</td>
<td>RHF_ODOR_160512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>80</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1</td>
<td>SM2540 C</td>
<td>a</td>
<td>MMH_TDS_160512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.70 H5</td>
<td></td>
<td></td>
<td>pH Units</td>
<td>1</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>RHF_PH_160512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>0.17</td>
<td>0.01</td>
<td>0.002</td>
<td>mg/L</td>
<td>1</td>
<td>SM4500-NO3 F</td>
<td>a</td>
<td>ANP_NO3_160513</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.04</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1</td>
<td>SM4500-P F</td>
<td>a</td>
<td>ANP_OHPO4_160512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1</td>
<td>SM5540 C</td>
<td>a</td>
<td>AMTES_160512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>8.2</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1</td>
<td>200.7/3010A</td>
<td>a</td>
<td>BJ_160519B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.33</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1</td>
<td>200.7/3010A</td>
<td>a</td>
<td>BJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.008</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1</td>
<td>200.7/3010A</td>
<td>a</td>
<td>BJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00024 J</td>
<td>0.0005</td>
<td>7.93E-05</td>
<td>mg/L</td>
<td>1</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP_16052WH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.012</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP_16052WH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>2.08E-05</td>
<td>mg/L</td>
<td>1</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP_16052WH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP_16052WH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0009 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP_16052WH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.00013 J</td>
<td>0.0005</td>
<td>5.53E-05</td>
<td>mg/L</td>
<td>1</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP_16052WH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00016</td>
<td>mg/L</td>
<td>1</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP_16052WH2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

If you have any questions concerning this report contact us at the above phone number.

Form: cResult.rpt
<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Substance</th>
<th>Units</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Method</th>
<th>MDL</th>
<th>Dilution Factor</th>
<th>Date</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>mg/L</td>
<td>ND</td>
<td>0.0002</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/24/16</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>mg/L</td>
<td>0.0044</td>
<td>0.0025</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/24/16</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
</tr>
<tr>
<td>E. Coli</td>
<td></td>
<td>MPN/100mL</td>
<td>61.6</td>
<td>1</td>
<td>SM9223</td>
<td>b</td>
<td>5/13/16</td>
<td>CLH</td>
<td>qt_160512</td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td></td>
<td></td>
<td>1986.3</td>
<td>1</td>
<td>SM9223</td>
<td>b</td>
<td>5/13/16</td>
<td>CLH</td>
<td>qt_160512</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>mg/L</td>
<td>0.049</td>
<td>0.010</td>
<td>0.003</td>
<td>a</td>
<td>5/18/16</td>
<td>ANP</td>
<td>TPHOS_160518</td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

Form: oResult.rpt
<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.28</td>
<td>0.10</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>RHF</td>
<td>TURB_160512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>MMH</td>
<td>245.1, 160516</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>1.9</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MMH</td>
<td>I160512A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.13</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MMH</td>
<td>I160512A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>3.8</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MMH</td>
<td>I160512A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>75.1</td>
<td>5.0</td>
<td>mg CO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>ANP</td>
<td>310.2, 160516</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.0</td>
<td>mg CO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>ANP</td>
<td>310.2, 160516</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIONITY</td>
<td>-1.5</td>
<td></td>
<td>SI</td>
<td>1.0</td>
<td>SM203</td>
<td>mph</td>
<td>COR_160520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND</td>
<td>5</td>
<td>ColorUnits</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>RHF</td>
<td>COLOR_160512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>RHF</td>
<td>ODOR_160512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>121</td>
<td>10</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>MMH</td>
<td>TDS_160512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.28</td>
<td>H5</td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>RHF</td>
<td>PH_160512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>1.89</td>
<td>0.01</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>ANP</td>
<td>NO3NO2_160513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.12</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>ANP</td>
<td>OPHOS_160512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5540 C</td>
<td>KH</td>
<td>AMT_160516</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>12.8</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>BJ</td>
<td>200.7_160519B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.03 J</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>BJ</td>
<td>200.7_160519B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.0004 J</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A</td>
<td>BJ</td>
<td>200.7_160519B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.0004 J</td>
<td>0.0005</td>
<td>7.93E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.015</td>
<td>0.001</td>
<td>0.0014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>2.08E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.000012</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0014 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>5.53E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00016</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>2.27E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0012 J</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1.0</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B.2, PCollie-18</td>
<td>CLH</td>
<td>qt_160512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>6.2</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM4500-P F, PCollie-18</td>
<td>CLH</td>
<td>qt_160512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.151</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F, PCollie-18</td>
<td>ANP</td>
<td>TPHOS_160518</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

Form: cResult.rpt
Data Report

Reference Number: 16-10884
Report Date: 6/7/16

### CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Lab	Analyzed	Analyst	Batch	Comment
E-10617 | TURBIDITY | 0.32 | 0.10 | NTU | 1.0 | 180.1 | a | 5/12/16 | RHF | TURB_160512 |
7439-97-6 | MERCURY | ND | 0.0002 | 1.40E-05 | mg/L | 1.0 | 245.1 | a | 5/16/16 | MMH | 245.1_160516 |
16887-00-8 | CHLORIDE | 3.4 | 0.1 | 0.0043 | mg/L | 1.0 | 300.0 | a | 5/13/16 | MHH | I160512A |
16894-48-8 | FLUORIDE | 0.12 | 0.1 | 0.0049 | mg/L | 1.0 | 300.0 | a | 5/13/16 | MHH | I160512A |
14808-79-8 | SULFATE | 23.9 | 0.2 | 0.0087 | mg/L | 1.0 | 300.0 | a | 5/13/16 | MHH | I160512A |
NA | BICARBONATE | 106 | 5.0 | mg | 1.0 | 310.2 | a | 5/16/16 | ANP | 310.2_160516 |
NA | CARBONATE | ND | 5.0 | mgCaCO3/L | 1.0 | 310.2 | a | 5/16/16 | ANP | 310.2_160516 |
NA | CORROSIVITY | -1.1 | | SI | 1.0 | SM203 | a | 5/20/16 | msp | COR_160520 |
E-11712 | COLOR | 6 | 5 | Color Units | 1.0 | SM2150 | a | 5/12/16 | RHF | COLOR_160512 |
E-11734 | ODOR | ND | 1 | TON | 1.0 | SM2150 | a | 5/12/16 | RHF | ODOR_160512 |
E-10173 | TOTAL DISSOLVED SOLIDS (TDS) | 280 | 10 | mg/L | 1.0 | SM2540 C | a | 5/12/16 | MHH | TDS_160512 |
E-10139 | HYDROGEN ION (pH) | 7.08 | H5 | pH Units | 1.0 | SM4500-H+ B | a | 5/16/16 | RHF | PH_160512 |
14797-55-8 | NITRATE-N | 16.7 | 0.10 | 0.002 | mg/L | 10.0 | SM4500-NO3 F | a | 5/13/16 | ANP | NO3NO2_160513 |
14265-44-2 | ORTHO-PHOSPHATE | 0.09 | 0.005 | 0.002 | mg/L | 1.0 | SM4500-P F | a | 5/13/16 | ANP | OPHOS_160512 |
NA | SURFACTANTS | ND | 0.05 | 0.05 | mg/L | 1.0 | SM5440 C | 5/26/16 | KF | AMTE5440_160521 |
7440-70-2 | CALCIUM | 33.8 | 0.5 | 0.009 | mg/L | 1.0 | 200.7 | a | 5/19/16 | BJ | 200.7_160519B |
7439-89-6 | IRON | 0.02 | J | 0.050 | mg/L | 1.0 | 200.7 | a | 5/19/16 | BJ | 200.7_160519B |
7439-96-5 | MANGANESE | ND | 0.001 | 0.0002 | mg/L | 1.0 | 200.7 | a | 5/19/16 | BJ | 200.7_160519B |
7440-38-2 | ARSENIC | 0.00029 | J | 0.0005 | 7.93E-05 | mg/L | 1.0 | 200.8 | a | 5/24/16 | MVP | 200.8_16052WW2 |
7440-39-3 | BARIUM | 0.051 | | 0.00014 | mg/L | 1.0 | 200.8 | a | 5/24/16 | MVP | 200.8_16052WW2 |
7440-43-9 | CADMIUM | ND | 0.00025 | 2.08E-05 | mg/L | 1.0 | 200.8 | a | 5/24/16 | MVP | 200.8_16052WW2 |
7440-47-3 | CHROMIUM | 0.00015 | J | 0.0005 | 0.00012 | mg/L | 1.0 | 200.8 | a | 5/24/16 | MVP | 200.8_16052WW2 |
7440-50-8 | COPPER | 0.003 | 0.002 | 8.63E-05 | mg/L | 1.0 | 200.8 | a | 5/24/16 | MVP | 200.8_16052WW2 |
7439-92-1 | LEAD | ND | 0.0005 | 5.53E-05 | mg/L | 1.0 | 200.8 | a | 5/24/16 | MVP | 200.8_16052WW2 |
7782-49-2 | SELENIUM | ND | 0.001 | 0.00016 | mg/L | 1.0 | 200.8 | a | 5/24/16 | MVP | 200.8_16052WW2 |
7440-22-4 | SILVER | ND | 0.0002 | 2.27E-05 | mg/L | 1.0 | 200.8 | a | 5/24/16 | MVP | 200.8_16052WW2 |
7440-66-6 | ZINC | 0.0016 | J | 0.0025 | 0.00047 | mg/L | 1.0 | 200.8 | a | 5/24/16 | MVP | 200.8_16052WW2 |
E. Coli | | <1.0 | 1 | MPN/100mL | 1.0 | SM9223 B.2.b/Colilert-18 | b | 5/13/16 | CLH | qtl_160512 |
TOTAL COLIFORM | 1.0 | 1 | MPN/100mL | 1.0 | SM9223 B.2.b/Colilert-18 | b | 5/13/16 | CLH | qtl_160512 |
7723-14-0 | TOTAL PHOSPHORUS | 0.101 | 0.010 | 0.003 | mg/L | 1.0 | SM4500-P F/SM4500-P B(R) | a | 5/18/16 | ANP | TPHOS_160518 |

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

Form: oResult.rpt
Data Report

Sample Description: Locher Road - GW_72
Lab Number: 24777
Sample Comment:
Sample Date: 5/12/16 10:15 am
Collected By: Steven Patten

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.36</td>
<td>0.1</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>RHF</td>
<td>TURB_160512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>MHH _160516</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>1.0</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MHH _160512A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.13</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MHH _160512A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>3.3</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MHH _160512A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>63.7</td>
<td>5.0</td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>SM203</td>
<td>COR_160520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.0</td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>SM203</td>
<td>ANP_160516</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIIVITY</td>
<td>-1.7</td>
<td></td>
<td></td>
<td>Si</td>
<td>1.0</td>
<td>ANP_160516</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>7</td>
<td>5</td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2150</td>
<td>RHF</td>
<td>COLOR_160512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>RHF</td>
<td>ODOR_160512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>100</td>
<td>10</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>MHH</td>
<td>TDS_160512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.19</td>
<td>H5</td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>RHF</td>
<td>PH_160512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>1.70</td>
<td>0.01</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>ANP_160513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.10</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>ANP_160512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5640 C</td>
<td>AMTESS401602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>10.7</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A B</td>
<td>BJ</td>
<td>200.7_160519B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.03 J</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A B</td>
<td>BJ</td>
<td>200.7_160519B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.0006 J</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010A B</td>
<td>BJ</td>
<td>200.7_160519B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.0005</td>
<td>0.0005</td>
<td>7.93E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A M</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.013</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A M</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>2.08E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A M</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A M</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0016 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A M</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>5.53E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A M</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00016</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A M</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>2.27E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A M</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0009 J</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010A M</td>
<td>MVP</td>
<td>200.8_16052WW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1.0</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223</td>
<td>CLH</td>
<td>qt_160512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>2.0</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>B.2 b/Colilert-18</td>
<td>CLH</td>
<td>qt_160512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.135</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>SM4500-P R</td>
<td>ANP</td>
<td>TPHOS_160518</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **ND** = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- **PQL** = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **D.F.** = Dilution Factor

Reference Number: 16-10884
Report Date: 6/7/16
DATA REPORT

Lab Number: 24777
- **Field ID:** Locher Road
- **Sample Description:** GW_72
- **Matrix:** Water
- **Sample Date:** 5/12/16
- **Extraction Date:** 5/18/16
- **Extraction Method:** 3535

Client Name: Walla Walla Basin Watershed Council
- **Address:** 810 South Main Street
 - **City:** Milton-Freewater
 - **State:** OR
 - **ZIP:** 97862

Project: Aquifer Recharge Water 2016
- **Report Date:** 6/7/16
- **Date Analyzed:** 5/24/16
- **Analyst:** CO
- **Batch:** 8081B_160518
- **Approved By:** pdm.rjk

Analytical Method:
- **Report Number:** 16-10884

CAS Number | Compound | RESULT | Flag | UNITS | Lab QL | Permit QL | MDL | D.F. | Lab |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.035</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>a</td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Report Date: 6/7/16
Date Analyzed: 5/19/16
 Analyst: KAH
Analytical Method: 8151A
Batch: 8151W_160518

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4-D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4-DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5-TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5-T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-85-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5-DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-88-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Reference Number: 16-10884
Project: Aquifer Recharge Water 2014

Client Information
- **Client Name:** Walla Walla Basin Watershed Council
 Address: 810 South Main Street, Milton-Freewater, OR 97862

Laboratory Information
- **Lab Number:** 24777
 Field ID: Locher Road
 Sample Description: GW_72

Analysis Details
- **Matrix:** Water
 Sample Date: 5/12/16
 Extraction Date: 5/16/16
 Extraction Method: 5030B

Results
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- NO - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
- a: unanalyzed sample

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. = Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City & State: Milton-Freewater, OR 97862

Lab Number: 24776
Field ID: Locher Road
Sample Description: GW_71
Matrix: Water
Sample Date: 5/12/16
Extraction Date: 5/18/16
Extraction Method: 3535

- Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.035</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 24776
Field ID: Locher Road
Sample Description: GW_71
Matrix: Water
Sample Date: 5/12/16
Extraction Date: 5/18/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-0</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 24776
Field ID: Locher Road
Sample Description: GW_71
Matrix: Water
Sample Date: 5/12/16
Extraction Date: 5/16/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOOROTYLINE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1 - TRICHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOEHTANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOORETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>106-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLbenzene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLENENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLbenzene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 24775
Field ID: Locher Road
Sample Description: GW_70
Matrix: Water
Sample Date: 5/12/16
Extraction Date: 5/18/16
Extraction Method: 3535

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab Permit QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.035</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4" - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4" - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4" - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
- If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Reference Number: 16-10884
Project: Aquifer Recharge Water 2016

Lab Number: 24775
Field ID: Locher Road

Sample Description: GW_70
Matrix: Water

Sample Date: 5/12/16
Extraction Date: 5/18/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-6</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-1</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2, 4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2, 4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1919-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>86-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3, 5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR 97862

Lab Number: 24774
Field ID: Locher Road
Sample Description: Intake
Matrix: Water
Sample Date: 5/12/16
Extraction Date: 5/18/16
Extraction Method: 3535

Reference Number: [16-10884](#)
Project: Aquifer Recharge Water 201-

Report Date: 6/7/16
Date Analyzed: 5/24/16
Analyst: CO
Analytical Method: 8081B
Batch: 8081B_160518
Approved By: pdm.rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Table: Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.035</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number:	24774
Field ID:	Locher Road
Sample Description:	Intake
Matrix:	Water
Sample Date:	5/12/16
Extraction Date:	5/18/16
Extraction Method:	3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-85-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBIEN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 24774
Field ID: Locher Road
Sample Description: Intake
Matrix: Water
Sample Date: 5/12/16
Extraction Date: 5/16/16
Extraction Method: 5030B

CAS Compound RESULT Flag UNITS Lab QL Permit QL MDL D.F. Lab COMMENT

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,4-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Calibration Check

Reference Number: 16-10884
Report Date: 06/07/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160519B</td>
<td>CALCIUM</td>
<td>10.1</td>
<td>11</td>
<td>mg/L</td>
<td>200.7</td>
<td>92</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>ARSENIC</td>
<td>0.00095</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>95</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.00098</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>98</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.00097</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>97</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.00097</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>97</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.00099</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.00096</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.00095</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>95</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.00096</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.00108</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>108</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160516</td>
<td>MERCURY</td>
<td>0.00199</td>
<td>0.00200</td>
<td>mg/L</td>
<td>245.1</td>
<td>100</td>
<td>95-105</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160518</td>
<td>MERCURY</td>
<td>0.00199</td>
<td>0.00200</td>
<td>mg/L</td>
<td>245.1</td>
<td>100</td>
<td>95-105</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MERCURY</td>
<td>0.00202</td>
<td>0.00200</td>
<td>mg/L</td>
<td>245.1</td>
<td>101</td>
<td>95-105</td>
<td>CAL</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>I160512A</td>
<td>CHLORIDE</td>
<td>1.0</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>1.03</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>103</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>2.0</td>
<td>2</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160512</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.96</td>
<td>1.00</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>96</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH_160512</td>
<td>HYDROGEN ION (pH)</td>
<td>7.99</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HYDROGEN ION (pH)</td>
<td>8.02</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160518</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.105</td>
<td>0.100</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>105</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160512</td>
<td>TURBIDITY</td>
<td>9.69</td>
<td>10.0</td>
<td>NTU</td>
<td>180.1</td>
<td>97</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160519B</td>
<td>CALCULUM</td>
<td>13.2</td>
<td>mg/L</td>
<td>200.7</td>
<td>102</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>ARSENIC</td>
<td>0.022</td>
<td>mg/L</td>
<td>200.8</td>
<td>88</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.024</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.023</td>
<td>mg/L</td>
<td>200.8</td>
<td>92</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.023</td>
<td>mg/L</td>
<td>200.8</td>
<td>92</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.0213</td>
<td>mg/L</td>
<td>200.8</td>
<td>85</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.0111</td>
<td>mg/L</td>
<td>200.8</td>
<td>89</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.023</td>
<td>mg/L</td>
<td>200.8</td>
<td>92</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>245.1_160516</td>
<td>MERCURY</td>
<td>0.00172</td>
<td>mg/L</td>
<td>245.1</td>
<td>103</td>
<td>90-110</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>245.1_160518</td>
<td>MERCURY</td>
<td>0.00178</td>
<td>mg/L</td>
<td>245.1</td>
<td>107</td>
<td>90-110</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>8081B_160518</td>
<td>4,4'-DDD</td>
<td>0.42</td>
<td>ug/L</td>
<td>8081B</td>
<td>84</td>
<td>78-132</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>4,4'-DDE</td>
<td>0.42</td>
<td>ug/L</td>
<td>8081B</td>
<td>84</td>
<td>73-127</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>4,4'-DDT</td>
<td>0.53</td>
<td>ug/L</td>
<td>8081B</td>
<td>106</td>
<td>56-158</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>ALDRIN</td>
<td>0.38</td>
<td>ug/L</td>
<td>8081B</td>
<td>76</td>
<td>68-128</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>ALPHA-CHLORDANE</td>
<td>0.38</td>
<td>ug/L</td>
<td>8081B</td>
<td>76</td>
<td>70-130</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>BHC, ALPHA -</td>
<td>0.44</td>
<td>ug/L</td>
<td>8081B</td>
<td>88</td>
<td>37-134</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>BHC, BETA -</td>
<td>0.42</td>
<td>ug/L</td>
<td>8081B</td>
<td>84</td>
<td>17-147</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>BHC, DELTA -</td>
<td>0.49</td>
<td>ug/L</td>
<td>8081B</td>
<td>98</td>
<td>32-127</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>DIELDRIN</td>
<td>0.4</td>
<td>ug/L</td>
<td>8081B</td>
<td>80</td>
<td>74-134</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN I</td>
<td>0.38</td>
<td>ug/L</td>
<td>8081B</td>
<td>76</td>
<td>67-133</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN II</td>
<td>0.38</td>
<td>ug/L</td>
<td>8081B</td>
<td>76</td>
<td>64-142</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN SULFATE</td>
<td>0.48</td>
<td>ug/L</td>
<td>8081B</td>
<td>96</td>
<td>71-143</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>ENDRIN</td>
<td>0.39</td>
<td>ug/L</td>
<td>8081B</td>
<td>78</td>
<td>30-147</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>ENDRIN ALDEHYDE</td>
<td>0.39</td>
<td>ug/L</td>
<td>8081B</td>
<td>78</td>
<td>1-189</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>ENDRIN KETONE</td>
<td>0.45</td>
<td>ug/L</td>
<td>8081B</td>
<td>90</td>
<td>70-130</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>GAMMA-CHLORDANE</td>
<td>0.42</td>
<td>ug/L</td>
<td>8081B</td>
<td>84</td>
<td>74-124</td>
<td>LFB</td>
<td>W</td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8081B_160518</td>
<td>HEPTACHLOR</td>
<td>0.4</td>
<td>ug/L</td>
<td>8081B</td>
<td>80</td>
<td>61-133</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>0.38</td>
<td>ug/L</td>
<td>8081B</td>
<td>76</td>
<td>73-127</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>LINDANE (BHC - GAMMA)</td>
<td>0.44</td>
<td>ug/L</td>
<td>8081B</td>
<td>88</td>
<td>17-140</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>METHOXYCHLOR</td>
<td>0.4</td>
<td>ug/L</td>
<td>8081B</td>
<td>80</td>
<td>41-157</td>
<td>LFB</td>
<td>W</td>
</tr>
<tr>
<td>8151W_160518</td>
<td>2,4 - D</td>
<td>1.7</td>
<td>ug/L</td>
<td>8151A</td>
<td>85</td>
<td>60-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>8.6</td>
<td>ug/L</td>
<td>8151A</td>
<td>108</td>
<td>49-136</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>0.93</td>
<td>ug/L</td>
<td>8151A</td>
<td>93</td>
<td>68-122</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>0.89</td>
<td>ug/L</td>
<td>8151A</td>
<td>89</td>
<td>62-128</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>0.46</td>
<td>ug/L</td>
<td>8151A</td>
<td>46</td>
<td>65-125</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>1.8</td>
<td>ug/L</td>
<td>8151A</td>
<td>90</td>
<td>67-121</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>11.3</td>
<td>ug/L</td>
<td>8151A</td>
<td>87</td>
<td>53-142</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>0.88</td>
<td>ug/L</td>
<td>8151A</td>
<td>88</td>
<td>66-126</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>2.5</td>
<td>ug/L</td>
<td>8151A</td>
<td>83</td>
<td>63-123</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>0.94</td>
<td>ug/L</td>
<td>8151A</td>
<td>47</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>0.93</td>
<td>ug/L</td>
<td>8151A</td>
<td>93</td>
<td>69-123</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>0.75</td>
<td>ug/L</td>
<td>8151A</td>
<td>75</td>
<td>48-114</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>0.25</td>
<td>ug/L</td>
<td>8151A</td>
<td>25</td>
<td>48-168</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICLOPYR</td>
<td>0.74</td>
<td>ug/L</td>
<td>8151A</td>
<td>74</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>8260W_160516</td>
<td>1,1 - DICHLOROETHANE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROPROPENE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>3.7</td>
<td>ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2 - TRICHLOROTHRANE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>3.7</td>
<td>ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPANE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: **16-10884**
Report Date: **06/07/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits* Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160516</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>3.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>3.7</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-DIBROMO-3-CHLOROPROPA</td>
<td>4.2</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>3.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROPROPA</td>
<td>4.1</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>3.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>3.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPA</td>
<td>4.5</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>4.1</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>3.7</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>3.9</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>3.9</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>3.9</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>3.7</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>4.1</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>3.7</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>4.6</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>4.0</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>3.9</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,2 - DICHLORETHENE</td>
<td>3.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>4.0</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOCHLOROMETHANE</td>
<td>4.0</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>4.0</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>2.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>70</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>3.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>3.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYLBENZENE</td>
<td>3.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.P.-XYLENE</td>
<td>7.5</td>
<td>8 ug/L</td>
<td>8260C</td>
<td>94</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>4.3</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>4.1</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>3.8</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLENE</td>
<td>3.7</td>
<td>4 ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160516</td>
<td>NAPHTHALENE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYLTOLENE</td>
<td>3.6</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>90</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLbenzene</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLbenzene</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFUOROMETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8081B_160518</td>
<td>4,4' - DDD</td>
<td>0.06</td>
<td>ug/L</td>
<td>8081B</td>
<td>120</td>
<td>62-158</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4' - DDE</td>
<td>0.054</td>
<td>ug/L</td>
<td>8081B</td>
<td>108</td>
<td>58-152</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4' - DDT</td>
<td>0.073</td>
<td>ug/L</td>
<td>8081B</td>
<td>146</td>
<td>45-190</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALDRIN</td>
<td>0.047</td>
<td>ug/L</td>
<td>8081B</td>
<td>94</td>
<td>54-154</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALPHA-CHLORDANE</td>
<td>0.045</td>
<td>ug/L</td>
<td>8081B</td>
<td>90</td>
<td>56-156</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, ALPHA -</td>
<td>0.064</td>
<td>ug/L</td>
<td>8081B</td>
<td>128</td>
<td>30-161</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, BETA -</td>
<td>0.059</td>
<td>ug/L</td>
<td>8081B</td>
<td>118</td>
<td>14-176</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, DELTA -</td>
<td>0.07</td>
<td>ug/L</td>
<td>8081B</td>
<td>140</td>
<td>26-152</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIELDRIN</td>
<td>0.054</td>
<td>ug/L</td>
<td>8081B</td>
<td>108</td>
<td>59-161</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN I</td>
<td>0.055</td>
<td>ug/L</td>
<td>8081B</td>
<td>110</td>
<td>54-160</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN II</td>
<td>0.057</td>
<td>ug/L</td>
<td>8081B</td>
<td>114</td>
<td>51-170</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN SULFATE</td>
<td>0.067</td>
<td>ug/L</td>
<td>8081B</td>
<td>134</td>
<td>57-172</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN</td>
<td>0.056</td>
<td>ug/L</td>
<td>8081B</td>
<td>112</td>
<td>24-176</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN ALDEHYDE</td>
<td>0.052</td>
<td>ug/L</td>
<td>8081B</td>
<td>104</td>
<td>1-189</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN KETONE</td>
<td>0.063</td>
<td>ug/L</td>
<td>8081B</td>
<td>126</td>
<td>56-156</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAMMA-CHLORDANE</td>
<td>0.059</td>
<td>ug/L</td>
<td>8081B</td>
<td>118</td>
<td>59-149</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR</td>
<td>0.059</td>
<td>ug/L</td>
<td>8081B</td>
<td>118</td>
<td>49-160</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>0.054</td>
<td>ug/L</td>
<td>8081B</td>
<td>108</td>
<td>58-152</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINDANE (BHC - GAMMA)</td>
<td>0.065</td>
<td>ug/L</td>
<td>8081B</td>
<td>130</td>
<td>14-168</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHOXYCHLOR</td>
<td>0.091</td>
<td>ug/L</td>
<td>8081B</td>
<td>182</td>
<td>33-188</td>
<td>LLFB</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Reagent Blank

Reference Number: **16-10884**
Report Date: **06/07/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160519B</td>
<td>CALCIUM</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>ARSENIC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>BARIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>CADMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>COPPER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>LEAD</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>SELENIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>SILVER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>ZINC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160516</td>
<td>MERCURY</td>
<td>ND</td>
<td>245.1</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160518</td>
<td>MERCURY</td>
<td>ND</td>
<td>245.1</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160512A</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160512A</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160512A</td>
<td>SULFATE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160512</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160518</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

- % Recovery = (Result of Analysis)/(True Value) * 100
- NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 16-10884
Report Date: 06/07/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Type</th>
<th>QC Qualifier</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160519B</td>
<td>0 CALCIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>0 ARSENIC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 BARIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 CADMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 CHROMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 COPPER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 LEAD</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 SELENIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 SILVER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ZINC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8081B_160518</td>
<td>0 4,4' - DDD</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 4,4' - DDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 4,4' - DDT</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ALDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ALPHA-CHLORDANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 BHC, ALPHA -</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 BHC, BETA -</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 BHC, DELTA -</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 DIELDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ENDOSULFAN I</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ENDOSULFAN II</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ENDOSULFAN SULFATE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ENDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ENDRIN ALDEHYDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ENDRIN KETONE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GAMMA-CHLORDANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 HEPTACHLOR</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 METHOXYCHLOR</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notation:

% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank
Reference Number: 16-10884
Report Date: 06/07/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QA Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8081B_160518</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>8151W_160518</td>
<td>2,4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160516</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: **16-10884**
Report Date: **06/07/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160516</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLOORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-1084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-1084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-1084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-1084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-1084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-1084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-1084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-1084</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: **16-10884**
Report Date: **06/07/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>QC Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160516</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-10884</td>
</tr>
<tr>
<td>OPHOS_160512</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>TDS_160512</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>ND</td>
<td>mg/L</td>
<td>SM2540-C</td>
<td>0-3</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160518</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>TURB_160512</td>
<td>TURBIDITY</td>
<td>ND</td>
<td>NTU</td>
<td>180.1</td>
<td>0-0</td>
<td>MB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: 16-10884
Report Date: 06/07/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160519B</td>
<td>CALCIUM</td>
<td>19.2</td>
<td>20</td>
<td>mg/L</td>
<td>200.7</td>
<td>96</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW</td>
<td>ARSENIC</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.042</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>245.1_160516</td>
<td>MERCURY</td>
<td>0.00274</td>
<td>0.00265</td>
<td>mg/L</td>
<td>245.1</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>245.1_160518</td>
<td>MERCURY</td>
<td>0.00268</td>
<td>0.00265</td>
<td>mg/L</td>
<td>245.1</td>
<td>101</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>COLOR_160512</td>
<td>COLOR</td>
<td>10</td>
<td>10</td>
<td>CU</td>
<td>SM2120 B</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>I160512A</td>
<td>CHLORIDE</td>
<td>5.8</td>
<td>6</td>
<td>mg/L</td>
<td>300.0</td>
<td>97</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>4.03</td>
<td>4</td>
<td>mg/L</td>
<td>300.0</td>
<td>101</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>30.7</td>
<td>30</td>
<td>mg/L</td>
<td>300.0</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160512</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.46</td>
<td>0.50</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>92</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TDS_160512</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>500</td>
<td>500</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160518</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.039</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>108</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TURB_160512</td>
<td>TURBIDITY</td>
<td>1.00</td>
<td>1.00</td>
<td>NTU</td>
<td>180.1</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
</tr>
</tbody>
</table>

Notation:

- % Recovery = (Result of Analysis)/(True Value) * 100
- NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE DEPENDENT QUALITY CONTROL REPORT

Duplicate, Matrix Spike/Matrix Spike Duplicate and Confirmation Result Report

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate 1 Result</th>
<th>Duplicate 2 Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>24774</td>
<td>200.7_160519B</td>
<td>CALCIUM</td>
<td>8.2</td>
<td>8.5</td>
<td>mg/L</td>
<td>3.6</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>200.8_16052WW2</td>
<td>24774</td>
<td>ARSENIC</td>
<td>0.00024</td>
<td>0.00016</td>
<td>mg/L</td>
<td>40.0</td>
<td>0-20</td>
<td>IEV</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24774</td>
<td>BARIUM</td>
<td>0.012</td>
<td>0.012</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24774</td>
<td>CADMIUM</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24774</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24774</td>
<td>COPPER</td>
<td>0.0009</td>
<td>0.001</td>
<td>mg/L</td>
<td>10.5</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24774</td>
<td>LEAD</td>
<td>0.00013</td>
<td>0.00014</td>
<td>mg/L</td>
<td>7.4</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24774</td>
<td>SELENIUM</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24774</td>
<td>SILVER</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24774</td>
<td>ZINC</td>
<td>0.0044</td>
<td>0.0023</td>
<td>mg/L</td>
<td>62.7</td>
<td>0-20</td>
<td>INH</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24979</td>
<td>LEAD</td>
<td>0.012</td>
<td>0.013</td>
<td>mg/L</td>
<td>8.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>25184</td>
<td>200.8_16052WW2</td>
<td>ARSENIC</td>
<td>0.58</td>
<td>0.62</td>
<td>ug/L</td>
<td>6.7</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25184</td>
<td>BARIUM</td>
<td>4.8</td>
<td>4.9</td>
<td>ug/L</td>
<td>2.1</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25184</td>
<td>CADMIUM</td>
<td>0.074</td>
<td>0.04</td>
<td>ug/L</td>
<td>59.6</td>
<td>0-20</td>
<td>IEV</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25184</td>
<td>CHROMIUM</td>
<td>0.47</td>
<td>0.45</td>
<td>ug/L</td>
<td>4.3</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25184</td>
<td>COPPER</td>
<td>20</td>
<td>20</td>
<td>ug/L</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25184</td>
<td>LEAD</td>
<td>0.38</td>
<td>0.38</td>
<td>ug/L</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25184</td>
<td>SELENIUM</td>
<td>0.54</td>
<td>0.57</td>
<td>ug/L</td>
<td>5.4</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25184</td>
<td>SILVER</td>
<td>0.04</td>
<td>0.04</td>
<td>ug/L</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>245.1_160516</td>
<td>23551</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23664</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24579</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate</th>
<th>QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>245.1_160518</td>
<td>24792</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24792</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>8151W_160518</td>
<td>24775</td>
<td>2.4 - D</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>2.4 DB</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>BENTAZON</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>CHLORAMBUF</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>DALAPON</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>DICAMBA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>DINOSEB</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>PICLORAM</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>COLOR_160512</td>
<td>24774</td>
<td>COLOR</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>I160512A</td>
<td>24735</td>
<td>FLUORIDE</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>CHLORIDE</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>FLUORIDE</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>24775</td>
<td>SULFATE</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>24792</td>
<td>CHLORIDE</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>24792</td>
<td>FLUORIDE</td>
<td>0.66</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>24792</td>
<td>SULFATE</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>24829</td>
<td>CHLORIDE</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>24829</td>
<td>FLUORIDE</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>24829</td>
<td>SULFATE</td>
<td>2.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Duplicate Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPHOS_160512</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>NITRATE-N</td>
<td>16.7</td>
<td>15.6</td>
<td>mg/L</td>
<td>6.8</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25182</td>
<td>NITRATE-N</td>
<td>1.25</td>
<td>1.24</td>
<td>mg/L</td>
<td>0.8</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH_160512</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.10</td>
<td>0.10</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24774</td>
<td>HYDROGEN ION (pH)</td>
<td>7.70</td>
<td>7.68</td>
<td>pH Units</td>
<td>0.3</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24960</td>
<td>HYDROGEN ION (pH)</td>
<td>7.54</td>
<td>7.57</td>
<td>pH Units</td>
<td>0.4</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160512</td>
<td></td>
</tr>
<tr>
<td>23662</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>13</td>
<td>12</td>
<td>mg/L</td>
<td>8.0</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24775</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>121</td>
<td>124</td>
<td>mg/L</td>
<td>2.4</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160518</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.101</td>
<td>0.093</td>
<td>mg/L</td>
<td>8.2</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.135</td>
<td>0.130</td>
<td>mg/L</td>
<td>3.8</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160512</td>
<td></td>
</tr>
<tr>
<td>24280</td>
<td>TURBIDITY</td>
<td>0.13</td>
<td>0.12</td>
<td>NTU</td>
<td>8.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24622</td>
<td>TURBIDITY</td>
<td>3.80</td>
<td>3.62</td>
<td>NTU</td>
<td>0.5</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated

FORM: QC Dependent.rpt
Laboratory Fortified Matrix (MS)

200.8_16052WW2

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Spike Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ARSENIC</td>
<td>0.00024</td>
<td>0.025</td>
<td>mg/L</td>
<td>95</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BARIUM</td>
<td>0.012</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.026</td>
<td>mg/L</td>
<td>104</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>0.0009</td>
<td>0.027</td>
<td>mg/L</td>
<td>104</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.00013</td>
<td>0.025</td>
<td>mg/L</td>
<td>99</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.023</td>
<td>mg/L</td>
<td>92</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>0.0126</td>
<td>mg/L</td>
<td>101</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZINC</td>
<td>0.0044</td>
<td>0.031</td>
<td>mg/L</td>
<td>106</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.012</td>
<td>0.037</td>
<td>mg/L</td>
<td>100</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARSENIC</td>
<td>0.58</td>
<td>25.7</td>
<td>ug/L</td>
<td>100</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BARIUM</td>
<td>4.8</td>
<td>32</td>
<td>ug/L</td>
<td>109</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>0.074</td>
<td>25.7</td>
<td>ug/L</td>
<td>103</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>0.47</td>
<td>27.6</td>
<td>ug/L</td>
<td>109</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>20</td>
<td>49</td>
<td>ug/L</td>
<td>116</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.38</td>
<td>26.2</td>
<td>ug/L</td>
<td>103</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SELENIUM</td>
<td>0.54</td>
<td>23</td>
<td>ug/L</td>
<td>90</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>0.04</td>
<td>12.9</td>
<td>ug/L</td>
<td>103</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

245.1_160516

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Spike Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00172</td>
<td>0.00172</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00175</td>
<td>0.00177</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00179</td>
<td>0.00178</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00171</td>
<td>0.00168</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00183</td>
<td>0.00177</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

245.1_160518

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Spike Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00172</td>
<td>0.00172</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00175</td>
<td>0.00177</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00179</td>
<td>0.00178</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00171</td>
<td>0.00168</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00183</td>
<td>0.00177</td>
<td>0.00167 mg/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8081B_160518

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Spike Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,4'-DDD</td>
<td>ND</td>
<td>0.46</td>
<td>0.44</td>
<td>0.5 ug/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,4'-DDE</td>
<td>ND</td>
<td>0.46</td>
<td>0.44</td>
<td>0.5 ug/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,4'-DDT</td>
<td>ND</td>
<td>0.58</td>
<td>0.56</td>
<td>0.5 ug/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALDRIN</td>
<td>ND</td>
<td>0.43</td>
<td>0.4</td>
<td>0.5 ug/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td>0.42</td>
<td>0.39</td>
<td>0.5 ug/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BHC, ALPHA-</td>
<td>ND</td>
<td>0.49</td>
<td>0.46</td>
<td>0.5 ug/L</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
Batch Analyte Sample Duplicate

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>24776</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td>0.47</td>
<td>0.43</td>
<td>0.5 ug/L</td>
<td>94</td>
<td>86</td>
<td>17-147</td>
<td>8.9</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td>0.53</td>
<td>0.5</td>
<td>0.5 ug/L</td>
<td>106</td>
<td>100</td>
<td>32-127</td>
<td>5.8</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>DIELDRIN</td>
<td>ND</td>
<td>0.45</td>
<td>0.43</td>
<td>0.5 ug/L</td>
<td>90</td>
<td>86</td>
<td>74-134</td>
<td>4.5</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td>0.42</td>
<td>0.42</td>
<td>0.5 ug/L</td>
<td>84</td>
<td>84</td>
<td>67-133</td>
<td>0.0</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td>0.41</td>
<td>0.39</td>
<td>0.5 ug/L</td>
<td>82</td>
<td>78</td>
<td>64-142</td>
<td>5.0</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td>0.53</td>
<td>0.52</td>
<td>0.5 ug/L</td>
<td>106</td>
<td>104</td>
<td>71-143</td>
<td>1.9</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>ENDRIN</td>
<td>ND</td>
<td>0.45</td>
<td>0.42</td>
<td>0.5 ug/L</td>
<td>90</td>
<td>84</td>
<td>30-147</td>
<td>6.9</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td>0.41</td>
<td>0.4</td>
<td>0.5 ug/L</td>
<td>82</td>
<td>80</td>
<td>1-189</td>
<td>2.5</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td>0.49</td>
<td>0.48</td>
<td>0.5 ug/L</td>
<td>98</td>
<td>96</td>
<td>70-130</td>
<td>2.1</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td>0.46</td>
<td>0.43</td>
<td>0.5 ug/L</td>
<td>92</td>
<td>86</td>
<td>74-124</td>
<td>6.7</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>0.45</td>
<td>0.43</td>
<td>0.5 ug/L</td>
<td>90</td>
<td>86</td>
<td>61-133</td>
<td>4.5</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td>0.43</td>
<td>0.42</td>
<td>0.5 ug/L</td>
<td>86</td>
<td>84</td>
<td>73-127</td>
<td>2.4</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td>0.49</td>
<td>0.46</td>
<td>0.5 ug/L</td>
<td>98</td>
<td>92</td>
<td>19-140</td>
<td>6.3</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24776</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>0.45</td>
<td>0.43</td>
<td>0.5 ug/L</td>
<td>90</td>
<td>86</td>
<td>41-157</td>
<td>4.5</td>
<td>0-0</td>
<td>LFM</td>
<td></td>
</tr>
</tbody>
</table>

8151W_160518

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>24777</td>
<td>2,4 - D</td>
<td>ND</td>
<td>1.8</td>
<td>2</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>60-120</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>2,4 DB</td>
<td>ND</td>
<td>9.9</td>
<td>8</td>
<td>ug/L</td>
<td>124</td>
<td>NA</td>
<td>49-134</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>0.94</td>
<td>1</td>
<td>ug/L</td>
<td>94</td>
<td>NA</td>
<td>68-122</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>2,4,5 T</td>
<td>ND</td>
<td>0.94</td>
<td>1</td>
<td>ug/L</td>
<td>94</td>
<td>NA</td>
<td>62-128</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>0.76</td>
<td>1</td>
<td>ug/L</td>
<td>76</td>
<td>NA</td>
<td>65-125</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>BENTAZON</td>
<td>ND</td>
<td>1.8</td>
<td>2</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>67-121</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>DALAPON</td>
<td>ND</td>
<td>15.4</td>
<td>13</td>
<td>ug/L</td>
<td>119</td>
<td>NA</td>
<td>53-421</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>DICAMBA</td>
<td>ND</td>
<td>0.94</td>
<td>1</td>
<td>ug/L</td>
<td>94</td>
<td>NA</td>
<td>66-126</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>2.7</td>
<td>3</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>63-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>DINOSEB</td>
<td>ND</td>
<td>1.4</td>
<td>2</td>
<td>ug/L</td>
<td>70</td>
<td>NA</td>
<td>73-127</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>0.95</td>
<td>1</td>
<td>ug/L</td>
<td>95</td>
<td>NA</td>
<td>69-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>PICLORAM</td>
<td>ND</td>
<td>0.95</td>
<td>1</td>
<td>ug/L</td>
<td>95</td>
<td>NA</td>
<td>48-114</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>0.68</td>
<td>1</td>
<td>ug/L</td>
<td>68</td>
<td>NA</td>
<td>48-168</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>24777</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>0.8</td>
<td>1</td>
<td>ug/L</td>
<td>80</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
</tbody>
</table>

I160512A

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>24735</td>
<td>FLUORIDE</td>
<td>0.21</td>
<td>1.27</td>
<td>1 mg/L</td>
<td>106</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24775</td>
<td>CHLORIDE</td>
<td>1.9</td>
<td>2.9</td>
<td>1 mg/L</td>
<td>100</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24775</td>
<td>FLUORIDE</td>
<td>0.13</td>
<td>1.20</td>
<td>1 mg/L</td>
<td>107</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24775</td>
<td>SULFATE</td>
<td>3.8</td>
<td>5.8</td>
<td>2 mg/L</td>
<td>100</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>24792</td>
<td>CHLORIDE</td>
<td>3.0</td>
<td>3.9</td>
<td>1</td>
<td>mg/L</td>
<td>90</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>24792</td>
<td>FLUORIDE</td>
<td>0.66</td>
<td>1.66</td>
<td>1</td>
<td>mg/L</td>
<td>100</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>24792</td>
<td>SULFATE</td>
<td>2.3</td>
<td>4.2</td>
<td>2</td>
<td>mg/L</td>
<td>95</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>24829</td>
<td>CHLORIDE</td>
<td>1.7</td>
<td>2.7</td>
<td>1</td>
<td>mg/L</td>
<td>100</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>24829</td>
<td>FLUORIDE</td>
<td>0.64</td>
<td>1.62</td>
<td>1</td>
<td>mg/L</td>
<td>98</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>24829</td>
<td>SULFATE</td>
<td>2.4</td>
<td>4.3</td>
<td>2</td>
<td>mg/L</td>
<td>95</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>NO3NO2_160513</td>
<td>NITRATE-N</td>
<td>16.7</td>
<td>16.5</td>
<td>16.2</td>
<td>0.50 mg/L</td>
<td>-40</td>
<td>-100</td>
<td>80-120</td>
<td>85.7</td>
<td>0-20</td>
</tr>
<tr>
<td>25182</td>
<td>NITRATE-N</td>
<td>1.25</td>
<td>1.80</td>
<td>1.77</td>
<td>0.5 mg/L</td>
<td>110</td>
<td>104</td>
<td>80-120</td>
<td>5.6</td>
<td>0-20</td>
</tr>
<tr>
<td>OPHOS_160512</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.10</td>
<td>1.01</td>
<td>1.03</td>
<td>1.00 mg/L</td>
<td>91</td>
<td>93</td>
<td>70-130</td>
<td>2.2</td>
<td>0-20</td>
</tr>
<tr>
<td>TPHOS_160518</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.101</td>
<td>0.149</td>
<td>0.138</td>
<td>0.050 mg/L</td>
<td>96</td>
<td>74</td>
<td>70-130</td>
<td>25.9</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td>TOTAL PHOSPHORUS</td>
<td>0.135</td>
<td>0.183</td>
<td>0.182</td>
<td>0.050 mg/L</td>
<td>96</td>
<td>94</td>
<td>70-130</td>
<td>2.1</td>
<td>0-20</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Qualifier Definitions

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H5</td>
<td>This test is specified to be performed in the field within 15 minutes of sampling; sample was received and analyzed past the regulatory holding time.</td>
</tr>
<tr>
<td>IEV</td>
<td>Acceptance criteria do not apply to estimated values</td>
</tr>
<tr>
<td>INH</td>
<td>The sample was non-homogeneous</td>
</tr>
<tr>
<td>IS</td>
<td>The ratio of the spike concentration to sample background was too low to meet performance criteria</td>
</tr>
<tr>
<td>J</td>
<td>Indicates an estimated concentration. This occurs when an analyte concentration is below the calibration curve but is above the method detection limit.</td>
</tr>
<tr>
<td>LR</td>
<td>Low recovery can not be accounted for. However, there is adequate sensitivity to detect the compound at the lower PQL. No sample detections so no further action for this analysis batch.</td>
</tr>
<tr>
<td>M1</td>
<td>Matrix spike recovery was high; the associated blank spike recovery was acceptable. Matrix bias indicated.</td>
</tr>
<tr>
<td>M2</td>
<td>Matrix spike recovery was low; the associated blank spike recovery was acceptable.</td>
</tr>
<tr>
<td>N1</td>
<td>See case narrative.</td>
</tr>
</tbody>
</table>

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.
<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Location</th>
<th>Sample ID</th>
<th>Sample Type</th>
<th>Quantity</th>
<th>Date</th>
<th>Time</th>
<th>Comments</th>
</tr>
</thead>
</table>
| 5/11/6 | Field 1 | Sample 1 | SW - Surface Water | 1.0 L | 5/11/6 | 10:00 | Cleaned-
| 5/11/6 | Field 2 | Sample 2 | SW - Surface Water | 1.0 L | 5/11/6 | 11:00 | Cleaned-
| 5/11/6 | Field 3 | Sample 3 | SW - Surface Water | 1.0 L | 5/11/6 | 12:00 | Cleaned-

Analyses Requested

- SW - Surface Water
- GW - Ground Water
- DW - Drinking Water
- WW - Wastewater
- OL - Oil

Special Instructions

- Please complete all applicable shaded sections.
- Phone: 541-998-7170
- Fax: 541-998-7170
- Address: 810 S Main Street
- Bill to: Walla Walla Basin Watershed Council
- Email: steve@wallawallawatershed.org
- Report to: Walla Walla Basin Watershed Council

Chain of Custody:

- Sample ID:
- Date:
- Time:
- Sample:
- Analyst:
- Phone:
- Fax:
- Address:
- Bill to:
March 9, 2016

Mr. Steve Patten
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

RE: 16-02539 - Walla Walla Basin Aquifer Recharge

Dear Mr. Steve Patten,

Your project: Walla Walla Basin Aquifer Recharge, was received on Thursday February 04, 2016.

All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone us at 800 755-9295.

Respectfully

Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Enclosures: Data Report
Case Narrative

Reference: 16-02539

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Sample Information</th>
<th>Analytical Method</th>
<th>Notes</th>
<th>Created by</th>
</tr>
</thead>
<tbody>
<tr>
<td>5988</td>
<td>Mill Creek - Stiller Pond</td>
<td>SM2150</td>
<td>Testers reported odors of pond water, salty-ness and the Ocean.</td>
<td>RHF</td>
</tr>
<tr>
<td>CAS ID#</td>
<td>Parameter</td>
<td>Result</td>
<td>PQL</td>
<td>MDL</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>4.66</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>2.9</td>
<td>0.1</td>
<td>0.0043</td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>2.6</td>
<td>0.2</td>
<td>0.0087</td>
</tr>
<tr>
<td>NA</td>
<td>CORROSiViTY</td>
<td>-1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>12</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>4 N1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>36.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOlvED SOLIDS (TDS)</td>
<td>91</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDRoGEN iON (pH)</td>
<td>7.47 H5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>0.59 H1</td>
<td>0.010</td>
<td>0.0024</td>
</tr>
<tr>
<td>E-10128</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>0.65</td>
<td>0.01</td>
<td>0.0028</td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTho-PHOSPHATE</td>
<td>0.07</td>
<td>0.01</td>
<td>0.0023</td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>8.0</td>
<td>0.5</td>
<td>0.009</td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRoN</td>
<td>0.40</td>
<td>0.050</td>
<td>0.0012</td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANeSe</td>
<td>0.005</td>
<td>0.001</td>
<td>0.0002</td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSeNIC</td>
<td>0.00015 J</td>
<td>0.0005</td>
<td>8.11E-05</td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BarIUm</td>
<td>0.010</td>
<td>0.001</td>
<td>0.00014</td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CAdMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.0002 J</td>
<td>0.001</td>
<td>0.00011</td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.001 J</td>
<td>0.002</td>
<td>8.63E-05</td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.00014 J</td>
<td>0.0005</td>
<td>0.00012</td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

If you have any questions concerning this report contact us at the above phone number.
Data Report

<table>
<thead>
<tr>
<th>Reference Number: 16-02539</th>
<th>Report Date: 3/9/16</th>
</tr>
</thead>
</table>

SELENIUM
- **Code:** 7782-49-2
- **Concentration:** 0.00033 J mg/L
- **Method:** 200.8/3010A
- **Date:** 2/9/16
- **Location:** MVP
- **Report:** 200.8_160209WW

SILVER
- **Code:** 7440-22-4
- **Concentration:** 0.0002 mg/L
- **Method:** 200.8/3010A
- **Date:** 2/9/16
- **Location:** MVP
- **Report:** 200.8_160209WW

ZINC
- **Code:** 7440-66-6
- **Concentration:** 0.004 mg/L
- **Method:** 200.8/3010A
- **Date:** 2/9/16
- **Location:** MVP
- **Report:** 200.8_160209WW

TOTAL PHOSPHORUS
- **Code:** 7723-14-0
- **Concentration:** 0.081 mg/L
- **Method:** SM4500-P F/SM4500-P F B(5)
- **Date:** 2/9/16
- **Location:** ANP
- **Report:** TPHOS_160209

Notes:
- **ND:** Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- **PQL:** Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **D.F.:** Dilution Factor

Form: cResult.rpt
Data Report

Sample Description: GW_136 - Stiller Pond
Lab Number: 5989
Sample Comment:
Sample Date: 2/3/16 11:45 am
Collected By: Steven Patten

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>12.5</td>
<td>0.10</td>
<td></td>
<td>NTU</td>
<td>1</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>2/4/16 TURB_160204</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>2/16/16</td>
<td>MMH</td>
<td>245.1_160216</td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>4.1</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/5/16</td>
<td>MMH</td>
<td>160204A</td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.17</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/5/16</td>
<td>MMH</td>
<td>160204A</td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>5.3</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/5/16</td>
<td>MMH</td>
<td>160204A</td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.41</td>
<td></td>
<td></td>
<td>Bi</td>
<td>1.0</td>
<td></td>
<td>2/18/16</td>
<td>MVP</td>
<td>COR_160218</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>8</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>COLOR_160204</td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>ODOR_160204</td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>137</td>
<td>1</td>
<td></td>
<td>mg CaCO₃/L</td>
<td>1.0</td>
<td>SM2320 B</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>ALK_160204A</td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>mgCaCO₃/L</td>
<td>1.0</td>
<td>SM2320 B</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>ALK_160204A</td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>195</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>2/9/16</td>
<td>MMH</td>
<td>TDS_160209</td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.66 H5</td>
<td></td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>PH_160204</td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>0.78</td>
<td>0.010</td>
<td>0.0024</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-N03 F</td>
<td>a</td>
<td>2/5/16</td>
<td>BJ</td>
<td>NO3N02_160205</td>
</tr>
<tr>
<td>E-10128</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>0.88</td>
<td>0.01</td>
<td>0.0028</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-N03 F</td>
<td>a</td>
<td>2/18/16</td>
<td>ANP</td>
<td>NO3N02_1618</td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.18</td>
<td>0.01</td>
<td>0.0023</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>2/5/16</td>
<td>BJ</td>
<td>OPHOS_160205</td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5440 C</td>
<td>a</td>
<td>2/6/16</td>
<td>KF</td>
<td>AMTE240_160206</td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>33.9</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.7_160209B</td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>1.84</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.7_160209B</td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.056</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.7_160209B</td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.011</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160206WW</td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.066</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160206WW</td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160206WW</td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.00093 J</td>
<td>0.001</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160206WW</td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0024</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160206WW</td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.0007</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160206WW</td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>0.0003 J</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160206WW</td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160206WW</td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0046</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160206WW</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.270</td>
<td>0.050</td>
<td>0.0026</td>
<td>mg/L</td>
<td>5.0</td>
<td>SM4500-P</td>
<td>a</td>
<td>2/9/16</td>
<td>ANP</td>
<td>TPHOS_160209</td>
</tr>
</tbody>
</table>

Notes:
ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
DF - Dilution Factor
### CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Lab	Analyzed	Analyst	Batch	Comment
0.4 | TURBIDITY | 1.40 | 0.10 | NTU | 1.0 | 180.1 | a | 2/4/16 | RHF | TURB_160204 |
ND | MERCURY | ND | 0.0002 | 1.40E-05 | mg/L | 1.0 | 245.1 | a | 2/16/16 | MMH | 245.1_160216 |
21 | CHLORIDE | 0.1 | 0.0043 | mg/L | 1.0 | 300.0 | a | 2/16/16 | MMH | I160204A |
0.21 | FLUORIDE | 0.1 | 0.0049 | mg/L | 1.0 | 300.0 | a | 2/16/16 | MMH | I160204A |
24.2 | SULFATE | 0.2 | 0.0087 | mg/L | 1.0 | 300.0 | a | 2/16/16 | MMH | I160204A |
-0.42 | CORROSIVITY | 5 | 5 | Color Units | 1.0 | SM1220 B | a | 2/4/16 | RHF | COLOR_160204 |
ND | ODOR | ND | 1 | TON | 1.0 | SM2150 | a | 2/4/16 | RHF | ODOR_160204 |
188 | BICARBONATE | 1 | mg | CaCO3/L | 1.0 | SM2320 B | a | 2/9/16 | MVP | ALK_160204A |
ND | CARBONATE | ND | 1 | mg CaCO3/L | 1.0 | SM2320 B | a | 2/9/16 | MVP | ALK_160204A |
321 | TOTAL DISSOLVED SOLIDS (TDS) | 10 | mg/L | 1.0 | SM2540 C | a | 2/9/16 | MMH | TDS_160209 |
7.40 | HYDROGEN ION (pH) | H5 | pH Units | 1.0 | SM4500-H B | a | 2/4/16 | RHF | PH_160204 |
4.12 | NITRATE-N | 0.010 | 0.0024 | mg/L | 1.0 | SM4500-NO3 F | a | 2/18/16 | ANP | NO3_160216 |
4.70 | TOTAL NITRATE/NITRITE | 0.01 | 0.0028 | mg/L | 1.0 | SM4500-NO3 F | a | 2/18/16 | ANP | NO3_160216 |
0.13 | ORTHO-PHOSPHATE | 0.01 | 0.0023 | mg/L | 1.0 | SM4500-P F | a | 2/16/16 | BJ | OPHOS_160205 |
ND | SURFACTANTS | ND | 0.025 | 0.025 | mg/L | 1.0 | SM5440 C | a | 2/16/16 | KF | AMTE420_160206 |
47.0 | CALCIUM | 0.5 | 0.009 | mg/L | 1.0 | 200.7/3010 A | a | 2/9/16 | BJ | 200.7_160209B |
0.21 | IRON | 0.050 | 0.0012 | mg/L | 1.0 | 200.7/3010 A | a | 2/9/16 | BJ | 200.7_160209B |
0.005 | MANGANESE | 0.001 | 0.0002 | mg/L | 1.0 | 200.7/3010 A | a | 2/9/16 | BJ | 200.7_160209B |
0.0019 | ARSENIC | 0.0005 | 8.11E-05 | mg/L | 1.0 | 200.8/3010 A | a | 2/9/16 | MVP | 200.8_160206W |
0.058 | BARIUM | 0.001 | 0.00014 | mg/L | 1.0 | 200.8/3010 A | a | 2/9/16 | MVP | 200.8_160206W |
0.00025 | CADMIUM | 8.11E-05 | mg/L | 1.0 | 200.8/3010 A | a | 2/9/16 | MVP | 200.8_160206W |
0.0003 | CHROMIUM | 0.001 | 0.00011 | mg/L | 1.0 | 200.8/3010 A | a | 2/9/16 | MVP | 200.8_160206W |
0.0013 | COPPER | 0.002 | 8.63E-05 | mg/L | 1.0 | 200.8/3010 A | a | 2/9/16 | MVP | 200.8_160206W |
ND | LEAD | ND | 0.0005 | 0.00012 | mg/L | 1.0 | 200.8/3010 A | a | 2/9/16 | MVP | 200.8_160206W |
0.0008 | SELENIUM | 0.001 | 0.00022 | mg/L | 1.0 | 200.8/3010 A | a | 2/9/16 | MVP | 200.8_160206W |
ND | SILVER | ND | 6.30E-05 | mg/L | 1.0 | 200.8/3010 A | a | 2/9/16 | MVP | 200.8_160206W |
0.0013 | ZINC | 0.0025 | 0.00047 | mg/L | 1.0 | 200.8/3010 A | a | 2/9/16 | MVP | 200.8_160206W |
0.149 | TOTAL PHOSPHORUS | 0.010 | 0.0026 | mg/L | 1.0 | SM4500-P | a | 2/9/16 | ANP | TPHOS_160209 |

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor
Data Report

Sample Description: GW-146 - Stiller Pond

Lab Number: 5991

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>2.01</td>
<td>0.10</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>TURB_160204</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/l</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>MMH</td>
<td>245.1_160216</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>32.8</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/l</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH</td>
<td>I160204A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.24</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/l</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH</td>
<td>I160204A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>40.3</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/l</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH</td>
<td>I160204A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND</td>
<td>5</td>
<td>Color Units</td>
<td>1.0</td>
<td></td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>COLOR_160204</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td>1.0</td>
<td></td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>ODOR_160204</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>231</td>
<td>1</td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>SM2320 B</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>ALK_160204A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>1</td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>SM3230 B</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>ALK_160204A</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>448</td>
<td>10</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>2/9/16</td>
<td>MMH</td>
<td>TDS_160209</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.39</td>
<td>H5</td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>PH_160204</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>10.68 H1</td>
<td>0.10</td>
<td>0.0024</td>
<td>mg/l</td>
<td>1.0</td>
<td>10.0</td>
<td>SM4500-NO3 F</td>
<td>a</td>
<td>2/5/16</td>
<td>BJ NO3NO2_160205</td>
</tr>
<tr>
<td>E-10128</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>10.8</td>
<td>0.10</td>
<td>0.0028</td>
<td>mg/l</td>
<td>1.0</td>
<td>10.0</td>
<td>SM4500-NO3 F</td>
<td>a</td>
<td>2/18/16</td>
<td>ANP NO3NO2_160218</td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.10</td>
<td>0.01</td>
<td>0.0023</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>SM4500-P F</td>
<td>a</td>
<td>2/18/16</td>
<td>BJ OPHOS_160205</td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>SM5440 C</td>
<td>a</td>
<td>2/6/16</td>
<td>KF AMTE420_160206</td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>53.1</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/l</td>
<td>1.0</td>
<td>200.7</td>
<td>7/3010 A</td>
<td>a</td>
<td>2/19/16</td>
<td>BJ 200.7_160209B</td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.15</td>
<td>0.50</td>
<td>0.0012</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.7</td>
<td>3010 A</td>
<td>a</td>
<td>2/9/16</td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.002</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.7</td>
<td>3010 A</td>
<td>a</td>
<td>2/9/16</td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.0018</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.8</td>
<td>3010 A</td>
<td>a</td>
<td>2/9/16</td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.077</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.8</td>
<td>3010 A</td>
<td>a</td>
<td>2/8/16</td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.8</td>
<td>3010 A</td>
<td>a</td>
<td>2/8/16</td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.0008 J</td>
<td>0.001</td>
<td>0.00011</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.8</td>
<td>3010 A</td>
<td>a</td>
<td>2/8/16</td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0013 J</td>
<td>0.002</td>
<td>8.36E-05</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.8</td>
<td>3010 A</td>
<td>a</td>
<td>2/8/16</td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.8</td>
<td>3010 A</td>
<td>a</td>
<td>2/8/16</td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>0.00085 J</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.8</td>
<td>3010 A</td>
<td>a</td>
<td>2/8/16</td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.8</td>
<td>3010 A</td>
<td>a</td>
<td>2/8/16</td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0013 J</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.1</td>
<td>200.8</td>
<td>3010 A</td>
<td>a</td>
<td>2/8/16</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.109</td>
<td>0.010</td>
<td>0.0026</td>
<td>mg/l</td>
<td>1.0</td>
<td>SM4500-P</td>
<td>F/SIM4500-P B(5)</td>
<td>a</td>
<td>2/9/16</td>
<td>ANP TPHOS_160209</td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

Form: cResult.rpt

Reference Number: 16-02539

Report Date: 3/9/16
Data Report

Sample Description:
GW-147 - Stiller Pond

Lab Number:
5992

Sample Date:
2/3/16

Report Date:
3/9/16

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.89</td>
<td>0.10</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>TURB_16024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mgl</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>2/16/16</td>
<td>MMH</td>
<td>245.1_160216</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>25</td>
<td>0.1</td>
<td>0.0043</td>
<td>mgl</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/5/16</td>
<td>MMH</td>
<td>I16024A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.15</td>
<td>0.1</td>
<td>0.0049</td>
<td>mgl</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/5/16</td>
<td>MMH</td>
<td>I16024A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>19.3</td>
<td>0.2</td>
<td>0.0087</td>
<td>mgl</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/5/16</td>
<td>MMH</td>
<td>I16024A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.74</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND</td>
<td>5</td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>COLOR_16024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>ODOR_16024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>131</td>
<td>1</td>
<td></td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>SM2320 B</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>ALK_16020A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>mgCaO3/L</td>
<td>1.0</td>
<td>SM2320 B</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>ALK_16020A</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>283</td>
<td>10</td>
<td></td>
<td>mgl</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>2/9/16</td>
<td>MMH</td>
<td>TDS_160209</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.32</td>
<td>H5</td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>PH_16024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>4.54</td>
<td>0.010</td>
<td>0.0024</td>
<td>mgl</td>
<td>1.0</td>
<td>SM4500-N03 F</td>
<td>a</td>
<td>2/9/16</td>
<td>BJ</td>
<td>NO3N02_160205</td>
<td></td>
</tr>
<tr>
<td>E-10128</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>5.04</td>
<td>0.05</td>
<td>0.0028</td>
<td>mgl</td>
<td>5.0</td>
<td>SM4500-N03 F</td>
<td>a</td>
<td>2/18/16</td>
<td>ANP</td>
<td>NO3N02_160218</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.18</td>
<td>0.01</td>
<td>0.0023</td>
<td>mgl</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>2/15/16</td>
<td>BJ</td>
<td>OPHOS_160206</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.025</td>
<td>0.025</td>
<td>mgl</td>
<td>1.0</td>
<td>SM5440 C</td>
<td>a</td>
<td>2/16/16</td>
<td>KF</td>
<td>AMTE420_160206</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>38.0</td>
<td>0.5</td>
<td>0.009</td>
<td>mgl</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.7_160209</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.15</td>
<td>0.050</td>
<td>0.0012</td>
<td>mgl</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.7_160209</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>mgl</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.7_160209</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.004</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mgl</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209W</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.036</td>
<td>0.001</td>
<td>0.0014</td>
<td>mgl</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209W</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mgl</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209W</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.0005 J</td>
<td>0.001</td>
<td>0.0011</td>
<td>mgl</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209W</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0012 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mgl</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209W</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mgl</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209W</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>0.0008 J</td>
<td>0.001</td>
<td>0.00022</td>
<td>mgl</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209W</td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mgl</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209W</td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.008</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mgl</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209W</td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.168</td>
<td>0.010</td>
<td>0.0061</td>
<td>mgl</td>
<td>1.0</td>
<td>SM4500-P</td>
<td>a</td>
<td>2/13/16</td>
<td>ANP</td>
<td>TPHOS_160212</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor
Data Report

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>10.6</td>
<td>0.10</td>
<td>1.40E-05</td>
<td>NTU</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/4/16</td>
<td>RHF</td>
<td>TURB_160204</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>245.1</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/16/16</td>
<td>MMH</td>
<td>245.1_160216</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>32.4</td>
<td>0.0043</td>
<td>300.0</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/5/16</td>
<td>MMH</td>
<td>I160204A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.24</td>
<td>0.1</td>
<td>300.0</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/5/16</td>
<td>MMH</td>
<td>I160204A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>39.2</td>
<td>0.0087</td>
<td>300.0</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/5/16</td>
<td>MMH</td>
<td>I160204A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.33</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>15</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/4/16</td>
<td>RHF</td>
<td>COLOR_160204</td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/4/16</td>
<td>RHF</td>
<td>ODOR_160204</td>
<td>Temperature: 40.8</td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>232</td>
<td>1</td>
<td></td>
<td>mg CaCO3/L</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>mg CaCO3/L</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>446</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>MVP</td>
<td>TDS_160209</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.37</td>
<td>H5</td>
<td></td>
<td>pH Units</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/4/16</td>
<td>RHF</td>
<td>PH_160204</td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>9.44</td>
<td>H1</td>
<td>0.0024</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/5/16</td>
<td>BJ</td>
<td>NO3NO2_160205</td>
<td></td>
</tr>
<tr>
<td>E-10128</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>10.9</td>
<td>0.10</td>
<td>10.0</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/18/16</td>
<td>ANP</td>
<td>NO3NO2_160218</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.11</td>
<td>0.023</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/5/16</td>
<td>BJ</td>
<td>OPH_160205</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.025</td>
<td>0.25</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/6/16</td>
<td>KF</td>
<td>AMTE420_160206</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>52.5</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.7_160209</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.82</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.7_160209</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.010</td>
<td>0.0001</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.7_160209</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.0017</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>BJ</td>
<td>200.8_160209</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.078</td>
<td>0.0001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0017</td>
<td>J</td>
<td>0.0005</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>0.0009</td>
<td>J</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209</td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209</td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.002</td>
<td>J</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/9/16</td>
<td>MVP</td>
<td>200.8_160209</td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.104</td>
<td>0.010</td>
<td>0.0061</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>2/12/16</td>
<td>ANP</td>
<td>TPH_160212</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor
Data Report

Sample Description: Field Blank
- **Lab Number:** 5994
- **Sample Comment:**

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.53</td>
<td>0.10</td>
<td>1.40E-05</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>2/4/16</td>
<td>RHF</td>
<td>TURB_160204</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>2/16/16</td>
<td>MMH</td>
<td>245.1</td>
<td>160216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/5/16</td>
<td>MMH</td>
<td>I160204A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/5/16</td>
<td>MMH</td>
<td>I160204A</td>
<td></td>
</tr>
<tr>
<td>1480-79-8</td>
<td>SULFATE</td>
<td>ND</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>2/5/16</td>
<td>MMH</td>
<td>I160204A</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **ND** = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- **PQL** = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **D.F.** = Dilution Factor

Form: cResult.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 05994
Field ID: Field Blank
Sample Description: Field Blank
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/10/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4-D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4-DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5-TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5-T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.77</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-74-6</td>
<td>MCPP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7085-19-0</td>
<td>MCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5-DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBACK</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 05994
Field ID: Field Blank
Sample Description: Field Blank
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,3,4- TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLEN BENEZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-08-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number</th>
<th>Field ID</th>
<th>Sample Description</th>
<th>Matrix</th>
<th>Sample Date</th>
<th>Extraction Date</th>
<th>Extraction Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>05993</td>
<td>Field Dup</td>
<td>Field Dup</td>
<td>Water</td>
<td>2/3/16</td>
<td>2/10/16</td>
<td>3510C</td>
</tr>
</tbody>
</table>

Reference Number: 16-02539
Project: Walla Walla Basin Aquifer Re

Report Date: 3/9/16
Date Analyzed: 2/10/16
Analyst: CO
Analytical Method: 8081B
Batch: 8081B_W160210
Approved By: co,hy,pdm
Authorized by: Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'-DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'-DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'-DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSOULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSOULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSOULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 05993
Field ID: Field Dup
Sample Description: Field Dup
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/9/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-6</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>0.77</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-74-6</td>
<td>MCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7085-19-0</td>
<td>MCPP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>1.1</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Report Date: 3/9/16
Date Analyzed: 2/8/16
Analyst: RJK
Batch: 8260W_160208

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,4 - TRIMETHYLPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **Flags** are data qualifiers. If there are no data qualifiers on your report definitions can be found on an accompanying sheet.
- **ND** indicates the compound was not detected above the PQL or MDL.
- **PQL = Practical Quantitation Limit** is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **D.F. - Dilution Factor.**

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-69-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLbenzene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLbenzene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-85-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOXYLOLTOLEUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-08-6</td>
<td>TERT - BUTYLbenzene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number:</th>
<th>Field ID:</th>
<th>Sample Description:</th>
<th>Matrix:</th>
<th>Sample Date:</th>
<th>Extraction Date:</th>
<th>Extraction Method:</th>
</tr>
</thead>
<tbody>
<tr>
<td>05992</td>
<td>GW-147</td>
<td>Stiller Pond</td>
<td>Water</td>
<td>2/3/16</td>
<td>2/10/16</td>
<td>3510C</td>
</tr>
</tbody>
</table>

Reference Number: 16-02539
Project: Walla Walla Basin Aquifer Re

Report Date: 3/9/16
Date Analyzed: 2/10/16
Analyst: CO
Analytical Method: 8081B
Batch: 8081B_W160210
Approved By: co,hy,pdm
Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

CAS Compounds

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-96-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-6</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.22</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.77</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>94-74-6</td>
<td>MCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>7085-19-0</td>
<td>MCPP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBNEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR **Zip:** 97862

Lab Number: 05992
Field ID: GW-147

Sample Description: Stillers Pond

Matrix: Water

Sample Date: 2/3/16
Extraction Date: 2/8/16

Extraction Method: 5030B

CAS Compound | Result | Units | PQL | MRL | MDL | D.F. | Lab | Comment

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>Result</th>
<th>Units</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLORBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLORBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLORBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOOROTHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPAENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLOORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOOROTHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPAENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 05991
Field ID: GW-146
Sample Description: Stiller Pond
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/10/16
Extraction Method: 3510C

Reference Number: 16-02539
Project: Walla Walla Basin Aquifer Recharge

Report Date: 3/9/16
Date Analyzed: 2/10/16
Analyst: CO
Analytical Method: 8081B
Batch: 8081B_W160210
Approved By: co.hy.pdm

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

- Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number:</th>
<th>05991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field ID:</td>
<td>GW-146</td>
</tr>
<tr>
<td>Sample Description:</td>
<td>Stiller Pond</td>
</tr>
<tr>
<td>Matrix:</td>
<td>Water</td>
</tr>
<tr>
<td>Sample Date:</td>
<td>2/3/16</td>
</tr>
<tr>
<td>Extraction Date:</td>
<td>2/9/16</td>
</tr>
<tr>
<td>Extraction Method:</td>
<td>3510C</td>
</tr>
</tbody>
</table>

Reference Number: 16-02539
Project: Walla Walla Basin Aquifer Re

Report Date: 3/9/16
Date Analyzed: 2/10/16
 Analyst: RJK
Analytical Method: 8151A
Batch: 8151W_160209
Approved By: co_hy_pdm

Authorized by:

Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.77</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-74-6</td>
<td>MCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7085-19-0</td>
<td>MCPP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLORBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.05</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>0.98</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Reference Number: 16-02539
Project: Walla Walla Basin Aquifer Recharge

Lab Number: 05991
Field ID: GW-146
Sample Description: Stiller Pond
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 5030B

### CAS Compound	RESULT	UNITS	PQL	MRL	MDL	D.F.	Lab	COMMENT
75-34-3 | 1,1 - DICHLOROETHANE | ND | ug/L | 0.4 | 0.11 | 1.00 | a |
75-35-4 | 1,1 - DICHLOROETHYLENE | ND | ug/L | 0.4 | 0.13 | 1.00 | a |
563-58-6 | 1,1 - DICHLOROPROPENE | ND | ug/L | 0.4 | 0.13 | 1.00 | a |
71-55-6 | 1,1,1 - TRICHLOROETHANE | ND | ug/L | 0.1 | 0.05 | 1.00 | a |
630-20-6 | 1,1,1,2 - TETRACHLOROETHANE | ND | ug/L | 0.4 | 0.11 | 1.00 | a |
79-00-5 | 1,1,2 - TRICHLOROETHANE | ND | ug/L | 0.4 | 0.11 | 1.00 | a |
79-34-5 | 1,1,2,2 - TETRACHLOROETHANE | ND | ug/L | 0.4 | 0.15 | 1.00 | a |
106-93-4 | 1,2 - DIBROMOETHANE (EDB) | ND | ug/L | 0.4 | 0.15 | 1.00 | a |
95-50-1 | 1,2 - DICHLOROBENZENE (ortho) | ND | ug/L | 0.4 | 0.08 | 1.00 | a |
107-06-2 | 1,2 - DICHLOROETHANE | ND | ug/L | 0.4 | 0.11 | 1.00 | a |
78-87-5 | 1,2 - DICHLOROPROPANE | ND | ug/L | 0.4 | 0.11 | 1.00 | a |
87-61-6 | 1,2,3 - TRICHLOROBENZENE | ND | ug/L | 0.4 | 0.08 | 1.00 | a |
96-18-4 | 1,2,3 - TRICHLOROPROPANE | ND | ug/L | 0.4 | 0.09 | 1.00 | a |
120-82-1 | 1,2,4 - TRICHLOROBENZENE | ND | ug/L | 0.4 | 0.13 | 1.00 | a |
95-63-6 | 1,2,4 - TRIMETHYLBENZENE | ND | ug/L | 0.4 | 0.09 | 1.00 | a |
96-12-8 | 1,2-DIBROMO-3-CHLOROPROPANE | ND | ug/L | 1.0 | 0.17 | 1.00 | a |
541-73-1 | 1,3 - DICHLOROBENZENE (meta) | ND | ug/L | 0.4 | 0.07 | 1.00 | a |
142-29-9 | 1,3 - DICHLOROPROPANE | ND | ug/L | 0.4 | 0.09 | 1.00 | a |
108-67-8 | 1,3,5 - TRIMETHYLBENZENE | ND | ug/L | 0.4 | 0.09 | 1.00 | a |
106-46-7 | 1,4 - DICHLOROBENZENE (para) | ND | ug/L | 0.4 | 0.06 | 1.00 | a |
594-20-7 | 2,2 - DICHLOROPROPANE | ND | ug/L | 0.4 | 0.22 | 1.00 | a |
71-43-2 | BENZENE | ND | ug/L | 0.4 | 0.16 | 1.00 | a |
108-86-1 | BROMOBENZENE | ND | ug/L | 0.4 | 0.09 | 1.00 | a |
74-97-5 | BROMOCHLOROMETHANE | ND | ug/L | 0.4 | 0.09 | 1.00 | a |
75-27-4 | BROMODICHLOROMETHANE | ND | ug/L | 0.4 | 0.13 | 1.00 | a |
75-25-2 | BROMOFORM | ND | ug/L | 0.4 | 0.2 | 1.00 | a |
74-83-9 | BROMOMETHANE | ND | ug/L | 0.4 | 0.3 | 1.00 | a |

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.
- If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-86-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-83-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Screening Only
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.
DATA REPORT

Client Name:
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number:
05990
Field ID: GW-145

Sample Description:
Still Pond

Matrix:
Water

Sample Date:
2/3/16

Extraction Date:
2/10/16

Extraction Method:
3510C

CAS Compound | RESULT | UNITS | PQL | MRL | MDL | D.F. | Lab |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2 ALDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>319-84-6 BHC, ALPHA -</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>319-85-7 BHC, BETA -</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>58-89-9 LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>319-86-8 BHC, DELTA -</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>5103-71-9 ALPHA-CHLORDANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>5103-74-2 GAMMA-CHLORDANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>50-29-3 4,4' - DDT</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>72-55-9 4,4' - DDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>72-54-8 4,4' - DDD</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>60-57-1 DIELDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>959-98-8 ENDOSULFAN I</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>33213-65-1 ENDOSULFAN II</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>1031-07-8 ENDOSULFAN SULFATE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>72-20-8 ENDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>7421-93-4 ENDRIN ALDEHYDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>53494-70-1 ENDRIN KETONE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>76-44-8 HEPTACHLOR</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>1024-57-3 HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>72-43-5 METHOXYCHLOR</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
</tr>
<tr>
<td>8001-35-2 TOXAPHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1.00</td>
<td>a</td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 05990
Field ID: GW-145
Sample Description: Stiller Pond
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/9/16
Extraction Method: 3510C

CAS	**Compound**	**RESULT**	**Flag**	**UNITS**	**PQL**	**MRL**	**MDL**	**D.F.**	**Lab**	**COMMENT**
50594-66-1 | ACIFLUORFEN | ND | ug/L | 0.1 | 0.15 | 1.00 | a
55336-06-3 | TRICLOPYR | ND | ug/L | 0.1 | 0.02 | 1.00 | a
94-75-7 | 2,4 - D | ND | ug/L | 0.1 | 0.05 | 1.00 | a
94-82-6 | 2,4 DB | ND | ug/L | 0.8 | 0.22 | 1.00 | a
93-72-1 | 2,4,5 - TP (SILVEX) | ND | ug/L | 0.1 | 0.04 | 1.00 | a
93-76-5 | 2,4,5 T | ND | ug/L | 0.1 | 0.03 | 1.00 | a
75-99-0 | DALAPON | ND | ug/L | 1.3 | 0.77 | 1.00 | a
1918-00-9 | DICAMBA | ND | ug/L | 0.1 | 0.03 | 1.00 | a
120-36-5 | DICHLORPROP | ND | ug/L | 0.1 | 0.05 | 1.00 | a
88-85-7 | DINOSEB | ND | ug/L | 0.1 | 0.13 | 1.00 | a
94-74-6 | MCPA | ND | ug/L | 0.1 | 0.03 | 1.00 | a
7085-19-0 | MCPP | ND | ug/L | 0.1 | 0.03 | 1.00 | a
87-86-5 | PENTACHLOROPHENOL | ND | ug/L | 0.04 | 0.02 | 1.00 | a
51-36-5 | 3,5 - DICHLOROBENZOIC ACID | ND | ug/L | 0.5 | 0.05 | 1.00 | a
25057-88-1 | BENTazon | ND | ug/L | 0.5 | 0.03 | 1.00 | a
133-90-4 | CHLORAMÈN | ND | ug/L | 0.2 | 0.03 | 1.00 | a
1861-32-1 | TOTAL DCPA | ND | ug/L | 0.1 | 0.04 | 1.00 | a
1918-02-1 | PICLORAM | ND | ug/L | 0.2 | 0.03 | 1.00 | a

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 05990
Field ID: GW-145
Sample Description: Stillie Pond
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>0.04</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>0.04</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>0.04</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-66-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPAE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPAE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,3,5-CHLOROPROPAE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPAE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPAE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>100-41-8</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR
ZIP: 97862

Lab Number: 05989
Field ID: GW_136
Sample Description: Stiller Pond
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/10/16
Extraction Method: 3510C

Reference Number: 16-02539
Project: Walla Walla Basin Aquifer Recharge

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 05989
Field ID: GW_136
Sample Description: Stiller Pond
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/9/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4-D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>0.77</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-74-6</td>
<td>MCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7085-19-0</td>
<td>MCPB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR
Zip Code: 97862

Lab Number: 05989
Field ID: GW_136
Sample Description: Stillie Pond
Matrix: Water
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>FLAG</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EBD)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>Reference Number: 16-02539</th>
<th>Lab Number: 05989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Date: 3/9/16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-8</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 05988
Field ID: Mill Creek
Sample Description: Stiller Pond
Matrix: Surface Water
Sample Date: 2/3/16
Extraction Date: 2/10/16
Extraction Method: 3510C

Reference Number: 16-02539
Project: Walla Walla Basin Aquifer Recharge

<table>
<thead>
<tr>
<th>Compound</th>
<th>RESULT</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Organochlorine Pesticides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>BHC, BETA -</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>BHC, DELTA -</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>4,4'- DDT</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>4,4'- DDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>4,4'- DDD</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>DIELDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>ENDSULFAN I</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>ENDSULFAN II</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>ENDIN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>TOXAPHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 05988
Field ID: Mill Creek
Sample Description: Stiller Pond
Matrix: Surface Water
Sample Date: 2/3/16
Extraction Date: 2/9/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.15</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-1</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.22</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>0.77</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.13</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-74-6</td>
<td>MCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7085-19-0</td>
<td>MCPG</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.05</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMIBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City, State: Milton-Freewater, OR 97862

Lab Number: 05988
Field ID: Mill Creek
Sample Description: Stiller Pond
Matrix: Surface Water
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 5030B

Table of Results

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1,1 - TRICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROETHENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBNZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2,4 - TRIMETHYLBNZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3, - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3, - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBNZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>1,2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-88-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td>Screen Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUROREMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.
Sample Information

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Sample Purpose: Investigative or Other

<table>
<thead>
<tr>
<th>Date/Time Collected</th>
<th>Sample Location</th>
<th>Sample Type</th>
<th>Field ID</th>
<th>Lab Sample #</th>
<th>Original Sample Date</th>
<th>Repeat Sample Number</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3/16 11:30 am</td>
<td>Stiller Pond</td>
<td>E. Coli</td>
<td>Mill Creek</td>
<td>16_05988</td>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL COLIFORM</td>
<td></td>
<td></td>
<td>37.3</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>2/3/16 11:45 am</td>
<td>Stiller Pond</td>
<td>E. Coli</td>
<td>GW_136</td>
<td>16_05989</td>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL COLIFORM</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>2/3/16 12:45 pm</td>
<td>Stiller Pond</td>
<td>E. Coli</td>
<td>GW-145</td>
<td>16_05990</td>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL COLIFORM</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>2/3/16 09:50 am</td>
<td>Stiller Pond</td>
<td>E. Coli</td>
<td>GW-146</td>
<td>16_05991</td>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL COLIFORM</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>2/3/16 01:20 pm</td>
<td>Stiller Pond</td>
<td>E. Coli</td>
<td>GW-147</td>
<td>16_05992</td>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL COLIFORM</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>2/3/16 10:10 am</td>
<td>Field Dup</td>
<td>E. Coli</td>
<td>Field Dup</td>
<td>16_05993</td>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL COLIFORM</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

NOTES:

If the result is Unsatisfactory a repeat sample is required for Public Water Systems. Private individuals should investigate the cause of the unsatisfactory result and resample.

E. Coli or Fecal Coliform are present in sample do not drink the water until it is properly treated.

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP unless otherwise noted. This report shall not be reproduced, except in full, and with written consent of this laboratory. Estimates of uncertainty are not included in this report. If this information is required please contact us at the phone number listed in the report header.
Reference Number: 16-02539

System ID

System Name:

Sampler Phone:

FAX/Email: steven.patten@wwbwc.org

Authorized by:

Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Client Name: Walla Walla Basin Watershed Council

810 South Main Street
Milton-Freewater, OR 97862

Date/Time Collected: 2/3/16 10:40 am

Sample Location: Field Blank

Sample Type: Lab Sample #: 16_05994

Field ID: Field Blank

PARAMETER	**RESULT**	**CI2 Residual**	**Original Sample Date**	**Repeat Sample Number**	**Lab**
E. Coli | <1 | | | |
TOTAL COLIFORM | <1 | | | |

NOTES:

If the result is Unsatisfactory a repeat sample is required for Public Water Systems. Private individuals should investigate the cause of the unsatisfactory result and resample.

If E. Coli or Fecal Coliform are present in sample do not drink the water until it is properly treated.

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NEALP unless otherwise noted. This report shall not be reproduced, except in full, and with written consent of this laboratory. Estimates of uncertainty are not included in this report. If this information is required please contact us at the phone number listed in the report header.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160209B</td>
<td>CALCIUM</td>
<td>10.6</td>
<td>11</td>
<td>mg/L</td>
<td>200.7</td>
<td>96</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>1</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>1.01</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>101</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>ARSENIC</td>
<td>0.00103</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.00097</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>97</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.00105</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.00103</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.00102</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>102</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.0011</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>110</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160216</td>
<td>MERCURY</td>
<td>0.00208</td>
<td>0.00200</td>
<td>mg/L</td>
<td>245.1</td>
<td>104</td>
<td>95-105</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160216</td>
<td>MERCURY</td>
<td>0.000226</td>
<td>0.000200</td>
<td>mg/L</td>
<td>245.1</td>
<td>113</td>
<td>95-105</td>
<td>CAL</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLORIDE</td>
<td>1</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160204A</td>
<td>FLUORIDE</td>
<td>0.96</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>96</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>1.9</td>
<td>2</td>
<td>mg/L</td>
<td>300.0</td>
<td>95</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_16020f</td>
<td>NITRATE-N</td>
<td>1.22</td>
<td>1.25</td>
<td>mg/L</td>
<td>SM4500-NO3 F</td>
<td>98</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_16021f</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>2.42</td>
<td>2.50</td>
<td>mg/L</td>
<td>SM4500-NO3 F</td>
<td>97</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160205</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.955</td>
<td>1.00</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>96</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH_160204</td>
<td>HYDROGEN ION (pH)</td>
<td>7.97</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HYDROGEN ION (pH)</td>
<td>7.99</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160209</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.108</td>
<td>0.100</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>108</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160212</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.105</td>
<td>0.100</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>105</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery Limits*</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURB_160204</td>
<td>TURBIDITY</td>
<td>9.81</td>
<td>10.0</td>
<td>NTU</td>
<td>98</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
</tr>
</tbody>
</table>

Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 16-02539
Report Date: 03/09/16

Batch Analyte Results

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160209B</td>
<td>CALCIUM</td>
<td>13</td>
<td>13</td>
<td>mg/L</td>
<td>200.7</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>0.5</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>0.52</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>ARSENIC</td>
<td>0.48</td>
<td>0.500</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.53</td>
<td>0.500</td>
<td>mg/L</td>
<td>200.8</td>
<td>106</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.482</td>
<td>0.500</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.532</td>
<td>0.500</td>
<td>mg/L</td>
<td>200.8</td>
<td>106</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.526</td>
<td>0.500</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.538</td>
<td>0.500</td>
<td>mg/L</td>
<td>200.8</td>
<td>108</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.43</td>
<td>0.500</td>
<td>mg/L</td>
<td>200.8</td>
<td>86</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.263</td>
<td>0.250</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.458</td>
<td>0.500</td>
<td>mg/L</td>
<td>200.8</td>
<td>92</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>245.1_160216</td>
<td>MERCURY</td>
<td>0.00169</td>
<td>0.0167</td>
<td>mg/L</td>
<td>245.1</td>
<td>101</td>
<td>90-110</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>8151W_160209</td>
<td>2,4-D</td>
<td>2</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>60-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>4</td>
<td>8</td>
<td>ug/L</td>
<td>8151A</td>
<td>50</td>
<td>49-136</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5- TP (SILVEX)</td>
<td>0.97</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>97</td>
<td>68-122</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>0.95</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>95</td>
<td>62-128</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>0.97</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>97</td>
<td>65-125</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>2</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>67-121</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>12.6</td>
<td>13</td>
<td>ug/L</td>
<td>8151A</td>
<td>97</td>
<td>53-142</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>0.95</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>95</td>
<td>66-126</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>2.9</td>
<td>3</td>
<td>ug/L</td>
<td>8151A</td>
<td>97</td>
<td>63-123</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>2.1</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>105</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCPA</td>
<td>0.86</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>86</td>
<td>49-121</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCPP</td>
<td>0.81</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>81</td>
<td>48-126</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>0.96</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>96</td>
<td>69-123</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>0.96</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>96</td>
<td>48-114</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>0.97</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>97</td>
<td>48-168</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICLOPYR</td>
<td>0.9</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>90</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Sample Independent Quality Control Report

Laboratory Fortified Blank

Reference Number: 16-02539
Report Date: 03/09/16

Analyte Results

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC</th>
<th>QC Type</th>
<th>QC Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160208</td>
<td>1,1 - DICHLOROETHANE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>83</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROPROPENE</td>
<td>3.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>3.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>108</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>103</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>3.5</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>88</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROPROPANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>85</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPANE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>4.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>110</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>3.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>78</td>
<td>80-120</td>
<td>L2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160208</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260B</td>
<td>105</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOCHLOROMETHANE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260B</td>
<td>103</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260B</td>
<td>103</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>2.4</td>
<td>ug/L</td>
<td>8260B</td>
<td>60</td>
<td>80-120</td>
<td>L2</td>
<td>LFB</td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>3.4</td>
<td>ug/L</td>
<td>8260B</td>
<td>85</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>3.4</td>
<td>ug/L</td>
<td>8260B</td>
<td>85</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO PROPYLEN B EN ZENE</td>
<td>3.2</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M,P-XYLENE</td>
<td>6.8</td>
<td>ug/L</td>
<td>8260B</td>
<td>85</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260B</td>
<td>108</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>3.3</td>
<td>ug/L</td>
<td>8260B</td>
<td>83</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLEN B EN ZENE</td>
<td>3.2</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>3.6</td>
<td>ug/L</td>
<td>8260B</td>
<td>90</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>3.5</td>
<td>ug/L</td>
<td>8260B</td>
<td>88</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYLTOLUENE</td>
<td>3.2</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLBENZENE</td>
<td>3.2</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>3.7</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLBENZENE</td>
<td>3.2</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>3.3</td>
<td>ug/L</td>
<td>8260B</td>
<td>83</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>3.7</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>3.5</td>
<td>ug/L</td>
<td>8260B</td>
<td>88</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260B</td>
<td>103</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>3.5</td>
<td>ug/L</td>
<td>8260B</td>
<td>88</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>3.2</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>3.0</td>
<td>ug/L</td>
<td>8260B</td>
<td>75</td>
<td>80-120</td>
<td>L2</td>
<td>LFB</td>
</tr>
</tbody>
</table>

Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Qualifier</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160209B</td>
<td>CALCIUM</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.7_160209B</td>
<td>IRON</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.7_160209B</td>
<td>MANGANESE</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>ARSENIC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>BARIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>CADMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>COPPER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>LEAD</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>SELENIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>SILVER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>ZINC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160216</td>
<td>MERCURY</td>
<td>ND</td>
<td>245.1</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160204A</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160204A</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160204A</td>
<td>SULFATE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td></td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_16020</td>
<td>NITRATE-N</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td></td>
<td></td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_160211</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-NO3 F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160205</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160209</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160212</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160209B</td>
<td>CALCULIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W</td>
<td>ARSENIC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160209</td>
<td>2,4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCPP</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160208</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 03/09/16
Report Date: 03/09/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160208</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>QC Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160208</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.P.-XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYL TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_16020</td>
<td>NITRATE-N</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-NO3 F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_16021</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-NO3 F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160205</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>tds_160209</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>ND</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>0-3</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160209</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160212</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160204</td>
<td>TURBIDITY</td>
<td>ND</td>
<td>NTU</td>
<td>180.1</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = \(\frac{\text{Result of Analysis}}{\text{True Value}} \) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: 16-02539
Report Date: 03/09/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160209B</td>
<td>IRON</td>
<td>2.04</td>
<td>2</td>
<td>mg/L</td>
<td>200.7</td>
<td>102</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>2.01</td>
<td>2</td>
<td>mg/L</td>
<td>200.7</td>
<td>101</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALCIUM</td>
<td>19.6</td>
<td>20</td>
<td>mg/L</td>
<td>200.7</td>
<td>98</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209W4</td>
<td>ARSENIC</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.042</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.042</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160216</td>
<td>MERCURY</td>
<td>0.00266</td>
<td>0.00265</td>
<td>mg/L</td>
<td>245.1</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOR_160204</td>
<td>COLOR</td>
<td>10</td>
<td>10</td>
<td>CU</td>
<td>SM2120 B</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160204A</td>
<td>CHLORIDE</td>
<td>5.9</td>
<td>6</td>
<td>mg/L</td>
<td>300.0</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>3.92</td>
<td>4</td>
<td>mg/L</td>
<td>300.0</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>29.5</td>
<td>30</td>
<td>mg/L</td>
<td>300.0</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_160211</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>0.90</td>
<td>1.0</td>
<td>mg/L</td>
<td>SM4500-NO3 F</td>
<td>90</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160205</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.451</td>
<td>0.49</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>92</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tds_160209</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>502</td>
<td>500</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160209</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.033</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>92</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160212</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.039</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>108</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160204</td>
<td>TURBIDITY</td>
<td>1.00</td>
<td>1.00</td>
<td>NTU</td>
<td>180.1</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Result</th>
<th>Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
</table>

*Notation:

- % Recovery = (Result of Analysis)/(True Value) * 100
- NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE DEPENDENT QUALITY CONTROL REPORT

Duplicate, Matrix Spike/Matrix Spike Duplicate and Confirmation Result Report

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate Result</th>
<th>QC Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160209B</td>
<td>5928</td>
<td>CALCIUM</td>
<td>41.0</td>
<td>41.3</td>
<td>mg/L</td>
<td>0.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5928</td>
<td>IRON</td>
<td>0.11</td>
<td>0.12</td>
<td>mg/L</td>
<td>8.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>IRON</td>
<td>0.15</td>
<td>0.14</td>
<td>mg/L</td>
<td>6.9</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>MANGANESE</td>
<td>0.002</td>
<td>0.002</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>CALCIUM</td>
<td>53.1</td>
<td>53.4</td>
<td>mg/L</td>
<td>0.6</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160209WW</td>
<td>5991</td>
<td>ARSENIC</td>
<td>0.0018</td>
<td>0.0018</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>BARIUM</td>
<td>0.077</td>
<td>0.078</td>
<td>mg/L</td>
<td>1.3</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>CADMIUM</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>CHROMIUM</td>
<td>0.0008</td>
<td>0.0009</td>
<td>mg/L</td>
<td>11.8</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>COPPER</td>
<td>0.0013</td>
<td>0.0014</td>
<td>mg/L</td>
<td>7.4</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>LEAD</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>SELENIUM</td>
<td>0.00085</td>
<td>0.001</td>
<td>mg/L</td>
<td>16.2</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>SILVER</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5991</td>
<td>ZINC</td>
<td>0.0013</td>
<td>0.0024</td>
<td>mg/L</td>
<td>59.5</td>
<td>0-20</td>
<td>IEV</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>6015</td>
<td>6015</td>
<td>ARSENIC</td>
<td>0.002</td>
<td>0.002</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6015</td>
<td>CADMIUM</td>
<td>0.00014</td>
<td>0.00014</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6015</td>
<td>COPPER</td>
<td>0.011</td>
<td>0.011</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6015</td>
<td>LEAD</td>
<td>0.0026</td>
<td>0.0026</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6015</td>
<td>SELENIUM</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6015</td>
<td>ZINC</td>
<td>0.019</td>
<td>0.019</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160216</td>
<td>6015</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6351</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of an analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch. Only Duplicate sample with detections are listed in this report. Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>%RPD</th>
<th>Limits</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8151W_160209</td>
<td>6667</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>2.4 - D</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>2.4 DB</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>2.4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>2.4,5 T</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>3.5 - DICHLOOROBENZOIC ACID</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>BENTAZON</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>DALAPON</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>DICAMBA</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>DINOSEB</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>MCPA</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>MCPP</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>PICLORAM</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5992</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
</tr>
<tr>
<td>COLOR_160204</td>
<td>5449</td>
<td>COLOR</td>
<td>10</td>
<td>10</td>
<td>Color Units</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>I160204A</td>
<td>5553</td>
<td>FLUORIDE</td>
<td>0.83</td>
<td>0.84</td>
<td>mg/L</td>
<td>1.2</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5554</td>
<td>FLUORIDE</td>
<td>0.84</td>
<td>0.84</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5555</td>
<td>FLUORIDE</td>
<td>0.82</td>
<td>0.83</td>
<td>mg/L</td>
<td>1.2</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>5850</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>NO3NO2_160205</td>
<td>5988</td>
<td>NITRATE-N</td>
<td>0.59</td>
<td>0.59</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>NO3NO2_160218</td>
<td>5988</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>0.65</td>
<td>0.65</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td></td>
<td>8417</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>2.73</td>
<td>2.63</td>
<td>mg/L</td>
<td>3.7</td>
<td>0-20</td>
<td>DUP</td>
</tr>
<tr>
<td>OPHOS_160205</td>
<td>5873</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>IEV</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Batch Analyte Sample Duplicate Units Result Result %RPD Limits Qualifier Type Comments

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6168</td>
<td>PH_160204</td>
<td>ORTHO-PHOSPHATE</td>
<td>1.94</td>
<td>1.89</td>
<td>mg/L</td>
<td>2.6</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5947</td>
<td>HYDROGEN ION (pH)</td>
<td>7.69</td>
<td>7.73</td>
<td>pH Units</td>
<td>0.5</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5994</td>
<td>HYDROGEN ION (pH)</td>
<td>6.71</td>
<td>6.74</td>
<td>pH Units</td>
<td>0.4</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160209</td>
<td>5993</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>446</td>
<td>447</td>
<td>mg/L</td>
<td>0.2</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160209</td>
<td>5305</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.050</td>
<td>0.056</td>
<td>mg/L</td>
<td>11.3</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5654</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.030</td>
<td>0.031</td>
<td>mg/L</td>
<td>3.3</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5661</td>
<td>TOTAL PHOSPHORUS</td>
<td>1.97</td>
<td>2.090</td>
<td>mg/L</td>
<td>5.9</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160212</td>
<td>6459</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.066</td>
<td>0.069</td>
<td>mg/L</td>
<td>4.4</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7164</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.045</td>
<td>0.041</td>
<td>mg/L</td>
<td>9.3</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160204</td>
<td>5449</td>
<td>TURBIDITY</td>
<td>6.58</td>
<td>6.47</td>
<td>NTU</td>
<td>1.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5990</td>
<td>TURBIDITY</td>
<td>1.40</td>
<td>1.38</td>
<td>NTU</td>
<td>1.4</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Laboratory Fortified Matrix (MS)

200.7_160209B

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5928</td>
<td>CALCII</td>
<td>41.0</td>
<td>54.5</td>
<td>13.0</td>
<td>mg/L</td>
<td>104</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5928</td>
<td>IRON</td>
<td>0.11</td>
<td>0.63</td>
<td>0.50</td>
<td>mg/L</td>
<td>104</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>IRON</td>
<td>0.15</td>
<td>0.189</td>
<td>0.025</td>
<td>mg/L</td>
<td>156</td>
<td>70-130 NA 0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>MANGANESE</td>
<td>0.002</td>
<td>0.029</td>
<td>0.025</td>
<td>mg/L</td>
<td>108</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>CALCIUM</td>
<td>53.1</td>
<td>54.8</td>
<td>0.025</td>
<td>mg/L</td>
<td>6,800</td>
<td>70-130 NA 0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

200.8_160209WW

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5991</td>
<td>ARSENIC</td>
<td>0.0018</td>
<td>0.027</td>
<td>0.025</td>
<td>mg/L</td>
<td>101</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>BARIUM</td>
<td>0.077</td>
<td>0.108</td>
<td>0.025</td>
<td>mg/L</td>
<td>124</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>CHROMIUM</td>
<td>0.0008</td>
<td>0.028</td>
<td>0.025</td>
<td>mg/L</td>
<td>109</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>COPPER</td>
<td>0.0013</td>
<td>0.029</td>
<td>0.025</td>
<td>mg/L</td>
<td>111</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0258</td>
<td>0.025</td>
<td>mg/L</td>
<td>103</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>SELENIUM</td>
<td>0.00085</td>
<td>0.023</td>
<td>0.025</td>
<td>mg/L</td>
<td>89</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>SILVER</td>
<td>ND</td>
<td>0.013</td>
<td>0.0125</td>
<td>mg/L</td>
<td>104</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5991</td>
<td>ZINC</td>
<td>0.0013</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>99</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6015</td>
<td>ARSENIC</td>
<td>0.002</td>
<td>0.027</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6015</td>
<td>CADMIUM</td>
<td>0.00014</td>
<td>0.0253</td>
<td>0.025</td>
<td>mg/L</td>
<td>101</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6015</td>
<td>COPPER</td>
<td>0.011</td>
<td>0.038</td>
<td>0.025</td>
<td>mg/L</td>
<td>108</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6015</td>
<td>LEAD</td>
<td>0.0026</td>
<td>0.0272</td>
<td>0.025</td>
<td>mg/L</td>
<td>98</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6015</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.0233</td>
<td>0.025</td>
<td>mg/L</td>
<td>93</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6015</td>
<td>ZINC</td>
<td>0.019</td>
<td>0.045</td>
<td>0.025</td>
<td>mg/L</td>
<td>104</td>
<td>70-130 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

245.1_160216

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6015</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00173</td>
<td>0.00174</td>
<td>0.00167 mg/L</td>
<td>104</td>
<td>70-130 0.6 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6351</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00174</td>
<td>0.00197</td>
<td>0.00167 mg/L</td>
<td>104</td>
<td>70-130 12.4 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6667</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00169</td>
<td>0.00169</td>
<td>0.00167 mg/L</td>
<td>101</td>
<td>70-130 0.0 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8151W_160209

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5992</td>
<td>2,4 - D</td>
<td>ND</td>
<td>2.1</td>
<td>2</td>
<td>ug/L</td>
<td>105</td>
<td>60-120 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5992</td>
<td>2,4 DB</td>
<td>ND</td>
<td>6</td>
<td>8</td>
<td>ug/L</td>
<td>75</td>
<td>49-134 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5992</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>110</td>
<td>NA 68-122 NA 0-20; LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5992</td>
<td>2,4,5 T</td>
<td>ND</td>
<td>1.1</td>
<td>2</td>
<td>ug/L</td>
<td>110</td>
<td>62-128 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5992</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>0.95</td>
<td>1</td>
<td>ug/L</td>
<td>95</td>
<td>NA 65-125 NA 0-20; LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5992</td>
<td>BENTAZON</td>
<td>ND</td>
<td>2.2</td>
<td>2</td>
<td>ug/L</td>
<td>110</td>
<td>67-121 NA 0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5992</td>
<td>DALAPON</td>
<td>ND</td>
<td>11</td>
<td>13</td>
<td>ug/L</td>
<td>85</td>
<td>NA</td>
<td>53-421</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5992</td>
<td>DICAMBA</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>66-126</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5992</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>3</td>
<td>3</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>63-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5992</td>
<td>DINOSEB</td>
<td>ND</td>
<td>2.1</td>
<td>2</td>
<td>ug/L</td>
<td>105</td>
<td>NA</td>
<td>73-127</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5992</td>
<td>MCPA</td>
<td>ND</td>
<td>0.95</td>
<td>1</td>
<td>ug/L</td>
<td>95</td>
<td>NA</td>
<td>49-121</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5992</td>
<td>MCPP</td>
<td>ND</td>
<td>0.84</td>
<td>1</td>
<td>ug/L</td>
<td>84</td>
<td>NA</td>
<td>48-126</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5992</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>69-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5992</td>
<td>PICLORAM</td>
<td>ND</td>
<td>0.96</td>
<td>1</td>
<td>ug/L</td>
<td>96</td>
<td>NA</td>
<td>48-114</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5992</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>110</td>
<td>NA</td>
<td>48-168</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5992</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>0.97</td>
<td>1</td>
<td>ug/L</td>
<td>97</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>I160204A</td>
<td></td>
</tr>
<tr>
<td>5553</td>
<td>FLUORIDE</td>
<td>0.83</td>
<td>1.79</td>
<td>1</td>
<td>mg/L</td>
<td>96</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5554</td>
<td>FLUORIDE</td>
<td>0.84</td>
<td>1.79</td>
<td>1</td>
<td>mg/L</td>
<td>95</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5555</td>
<td>FLUORIDE</td>
<td>0.82</td>
<td>1.77</td>
<td>1</td>
<td>mg/L</td>
<td>95</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5850</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.99</td>
<td>1</td>
<td>mg/L</td>
<td>99</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>NO3NO2_160205</td>
<td></td>
</tr>
<tr>
<td>5988</td>
<td>NITRATE-N</td>
<td>0.59</td>
<td>1.10</td>
<td>1.10</td>
<td>0.50 mg/L</td>
<td>102</td>
<td>102</td>
<td>80-120</td>
<td>0.0</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>NO3NO2_160218</td>
<td></td>
</tr>
<tr>
<td>5988</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>0.65</td>
<td>1.68</td>
<td>1.71</td>
<td>1.0 mg/L</td>
<td>103</td>
<td>106</td>
<td>80-120</td>
<td>2.9</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>8417</td>
<td>TOTAL NITRATE/NITRITE</td>
<td>2.73</td>
<td>3.74</td>
<td>3.75</td>
<td>1.0 mg/L</td>
<td>101</td>
<td>102</td>
<td>80-120</td>
<td>1.0</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>OPHOS_160205</td>
<td></td>
</tr>
<tr>
<td>5873</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.011</td>
<td>0.94</td>
<td>0.95</td>
<td>1.00 mg/L</td>
<td>93</td>
<td>94</td>
<td>70-130</td>
<td>1.1</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>6168</td>
<td>ORTHO-PHOSPHATE</td>
<td>1.94</td>
<td>2.85</td>
<td>2.75</td>
<td>1.00 mg/L</td>
<td>91</td>
<td>81</td>
<td>70-130</td>
<td>11.6</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>TPHOS_160209</td>
<td></td>
</tr>
<tr>
<td>5305</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.050</td>
<td>0.108</td>
<td>0.109</td>
<td>0.050 mg/L</td>
<td>116</td>
<td>118</td>
<td>70-130</td>
<td>1.7</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5654</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.030</td>
<td>0.080</td>
<td>0.086</td>
<td>0.050 mg/L</td>
<td>100</td>
<td>112</td>
<td>70-130</td>
<td>11.3</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>5661</td>
<td>TOTAL PHOSPHORUS</td>
<td>1.97</td>
<td>2.42</td>
<td>2.36</td>
<td>0.050 mg/L</td>
<td>900</td>
<td>780</td>
<td>70-130</td>
<td>14.3</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>TPHOS_160212</td>
<td></td>
</tr>
<tr>
<td>6459</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.066</td>
<td>0.123</td>
<td>0.126</td>
<td>0.050 mg/L</td>
<td>114</td>
<td>120</td>
<td>70-130</td>
<td>5.1</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>7154</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.142</td>
<td>0.200</td>
<td>0.206</td>
<td>0.050 mg/L</td>
<td>116</td>
<td>128</td>
<td>70-130</td>
<td>9.8</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>7164</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.045</td>
<td>0.108</td>
<td>0.091</td>
<td>0.050 mg/L</td>
<td>126</td>
<td>92</td>
<td>70-130</td>
<td>31.2</td>
<td>0-20</td>
<td>INH</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Qualifier Definitions

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Sample analysis performed past holding time.</td>
</tr>
<tr>
<td>H5</td>
<td>This test is specified to be performed in the field within 15 minutes of sampling; sample was received and analyzed past the regulatory holding time.</td>
</tr>
<tr>
<td>IEV</td>
<td>Acceptance criteria do not apply to estimated values</td>
</tr>
<tr>
<td>IM</td>
<td>Matrix induced bias assumed</td>
</tr>
<tr>
<td>INH</td>
<td>The sample was non-homogeneous</td>
</tr>
<tr>
<td>IS</td>
<td>The ratio of the spike concentration to sample background was too low to meet performance criteria</td>
</tr>
<tr>
<td>J</td>
<td>Indicates an estimated concentration. This occurs when an analyte concentration is below the calibration curve but is above the method detection limit.</td>
</tr>
<tr>
<td>L2</td>
<td>The associated blank spike recovery was below laboratory acceptance limits.</td>
</tr>
<tr>
<td>N1</td>
<td>See case narrative.</td>
</tr>
</tbody>
</table>

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.
Sample Request (Must Include Fax or Email)

- **Date:** 2-3-13
- **Time:** 10:00
- **Location:** Field ID

Analyses Requested

<table>
<thead>
<tr>
<th>Field ID</th>
<th>Other</th>
<th>Form / Ceria</th>
<th>Other Analyses</th>
<th>Count</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Instructions

1. Use one line per sample location.
2. Be specific in analogical requests.
3. **(WIN)** List each metal individually (new).
4. **(WIN)** Check off analyses to be performed for each sample location.
5. Enter number of containers.

<table>
<thead>
<tr>
<th>NO.3</th>
<th>Total P in Soil</th>
<th>Metals</th>
<th>Inorganics</th>
<th>Foaming Agents</th>
<th>8580</th>
<th>8580A - Water</th>
<th>8580A - Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Analyses Required

- **Form / Ceria**
- **Other Analyses**
- **Count:** 5

Address:

- **City:** Yuma
- **State:** AZ
- **Zip:** 85367
- **Phone:** 520-922-7700
- **Fax:** 520-922-7701

Project:

- **Name:** Steven Pefkin
- **Email:** steven.pefkink@wmdc.gov
- **Phone:** 520-922-7700
- **Fax:** 520-922-7701
- **Address:** 810 S. Main Street

Waive Walla Walla Watershed Council

Note: Please complete all applicable shaded sections (1 of 2)
<table>
<thead>
<tr>
<th>ColumnHeaders</th>
<th>Rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain of custody & labels agee</td>
<td></td>
</tr>
<tr>
<td>Samples received intact</td>
<td></td>
</tr>
<tr>
<td>Sample Temp C satisfaction</td>
<td></td>
</tr>
<tr>
<td>Custody Seal intact</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Chain of custody & labels agee</td>
<td></td>
</tr>
</tbody>
</table>

Instructions:
- Footnote: (Must Include Fax or Email)
- Issue: 3/31/2010
- Sample Request Request
- Phone: 517-938-2741

<table>
<thead>
<tr>
<th>Total Containers</th>
<th>Number of Containers</th>
<th>Trip Blank (CS20)</th>
<th>T-Pros (Particular)</th>
<th>Quality (Particular)</th>
<th>Code</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL

<table>
<thead>
<tr>
<th>Other</th>
<th>ORA</th>
<th>Cerlal</th>
<th>Clean Water Act</th>
<th>Other Drinking Water Act</th>
<th>Check Regulation Program</th>
<th>Code</th>
<th>Dept</th>
<th>Lab</th>
<th>Exp</th>
<th>Expr</th>
<th>P.O.</th>
<th>FAX</th>
<th>OR RZ</th>
<th>9862</th>
<th>810 S Main Street</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

For Lab Use Only

(please complete all applicable shaded sections)
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Samples [sampling times]</th>
<th>Reporting Limit</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 mg/L</td>
<td>Standard Method 4110</td>
</tr>
<tr>
<td>Chloride</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 mg/L</td>
<td>Standard Method 4110</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.5 mg/L</td>
<td>Standard Method 4110</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.5 mg/L</td>
<td>Standard Method 4110</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>2 mg/L</td>
<td>Standard Method 2540 C</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>2 mg/L</td>
<td>Standard Method 2540 C</td>
</tr>
<tr>
<td>Foaming Agents</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.05 mg/L</td>
<td>N/A</td>
</tr>
<tr>
<td>Foaming Agents</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.05 mg/L</td>
<td>N/A</td>
</tr>
<tr>
<td>Corrosivity</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>Noncorrosive</td>
<td>N/A</td>
</tr>
<tr>
<td>Corrosivity</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>Noncorrosive</td>
<td>N/A</td>
</tr>
<tr>
<td>Color</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>15 Color Units</td>
<td>N/A</td>
</tr>
<tr>
<td>Color</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>15 Color Units</td>
<td>N/A</td>
</tr>
<tr>
<td>Odor</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>3 Threshold Odor Units</td>
<td>Standard Method 2150</td>
</tr>
<tr>
<td>Odor</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>3 Threshold Odor Units</td>
<td>Standard Method 2150</td>
</tr>
<tr>
<td>Chlorinated Pesticides</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 μg/L</td>
<td>EPA Method 8081</td>
</tr>
<tr>
<td>Chlorinated Pesticides</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 μg/L</td>
<td>EPA Method 8081</td>
</tr>
<tr>
<td>Chlorinated Pesticides</td>
<td>Soil</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 μg/Kg</td>
<td>EPA Method 8081</td>
</tr>
<tr>
<td>PCBs</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>1 pg/L</td>
<td>EPA Method 1668C</td>
</tr>
<tr>
<td>PCBs</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>1 pg/L</td>
<td>EPA Method 1668C</td>
</tr>
<tr>
<td>PCBs</td>
<td>Soil</td>
<td>Pre, Mid & Post Operations</td>
<td>10 pg/Kg</td>
<td>EPA Method 1668C</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.01 mg/L</td>
<td>Standard Method 4500-NO₃⁻</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.01 mg/L</td>
<td>Standard Method 4500-NO₃⁻</td>
</tr>
<tr>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Samples [sampling times]</td>
<td>Reporting Limit</td>
<td>Analytical Method</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>Soil</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 mg/Kg</td>
<td>Standard Method 4500-NO₃⁻</td>
</tr>
<tr>
<td>Total Phosphorus (Dissolved & Particulate)</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.005 mg/L</td>
<td>Standard Method 4500-P</td>
</tr>
<tr>
<td>Total Phosphorus (Dissolved & Particulate)</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.005 mg/L</td>
<td>Standard Method 4500-P</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>Soil</td>
<td>Pre, Mid & Post Operations</td>
<td>0.05 mg/Kg</td>
<td>Standard Method 4500-P</td>
</tr>
<tr>
<td>Carbonate & Bicarbonate</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>10 mg/L</td>
<td>Standard Method 2320B</td>
</tr>
<tr>
<td>Carbonate & Bicarbonate</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>10 mg/L</td>
<td>Standard Method 2320B</td>
</tr>
<tr>
<td>Turbidity</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>1 NTU</td>
<td>Standard Method 2130</td>
</tr>
<tr>
<td>Turbidity</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>1 NTU</td>
<td>Standard Method 2130</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.01 μg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.01 μg/L</td>
<td>Standard Method 3125</td>
</tr>
</tbody>
</table>
SAMPLING PARAMETERS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Samples [sampling times]</th>
<th>Reporting Limit</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Temperature</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 °C</td>
<td>NIST Thermometer</td>
</tr>
<tr>
<td>Water Temperature</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 °C</td>
<td>NIST Thermometer</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>1 µS/cm</td>
<td>YSI 30/Orion 5-Star</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>1 µS/cm</td>
<td>YSI 30/Orion 5-Star</td>
</tr>
<tr>
<td>pH</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 pH units</td>
<td>Orion 5-Star meter</td>
</tr>
<tr>
<td>pH</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 pH units</td>
<td>Orion 5-Star meter</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.2 mg/L</td>
<td>Orion 5-Star meter</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.2 mg/L</td>
<td>Orion 5-Star meter</td>
</tr>
<tr>
<td>Barium</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Barium</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Chromium</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.5 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Chromium</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.5 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Lead</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Lead</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Mercury</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.05 µg/L</td>
<td>Standard Method 3112 B</td>
</tr>
<tr>
<td>Mercury</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.05 µg/L</td>
<td>Standard Method 3112 B</td>
</tr>
<tr>
<td>Selenium</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.5 µg/L</td>
<td>Standard Method 3125 B</td>
</tr>
<tr>
<td>Selenium</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.5 µg/L</td>
<td>Standard Method 3125 B</td>
</tr>
<tr>
<td>Silver</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3150 B</td>
</tr>
<tr>
<td>Silver</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3150 B</td>
</tr>
</tbody>
</table>

WWBWC Washington Aquifer Recharge QAPP - Version 1.3
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Samples [sampling times]</th>
<th>Reporting Limit</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 mg/L</td>
<td>Standard Method 4110</td>
</tr>
<tr>
<td>Fluoride</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 mg/L</td>
<td>Standard Method 4110</td>
</tr>
<tr>
<td>Endrin</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8081</td>
</tr>
<tr>
<td>Endrin</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8081</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8081</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8260</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8260</td>
</tr>
<tr>
<td>2,4-D</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8151</td>
</tr>
<tr>
<td>2,4-D</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8151</td>
</tr>
<tr>
<td>2,4,5-TP Silvex</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8151</td>
</tr>
<tr>
<td>2,4,5-TP Silvex</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>EPA Method 8151</td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>1/100 ml</td>
<td>Standard Method 9221 D and 9222 B</td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>1/100 ml</td>
<td>Standard Method 9221 D and 9222 B</td>
</tr>
<tr>
<td>Copper</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Copper</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.1 µg/L</td>
<td>Standard Method 3125</td>
</tr>
<tr>
<td>Iron</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.03 mg/L</td>
<td>Standard Method 3120 B</td>
</tr>
<tr>
<td>Iron</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.03 mg/L</td>
<td>Standard Method 3120 B</td>
</tr>
<tr>
<td>Manganese</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>0.005 mg/L</td>
<td>Standard Method 3120 B</td>
</tr>
<tr>
<td>Manganese</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>0.005 mg/L</td>
<td>Standard Method 3120 B</td>
</tr>
<tr>
<td>Zinc</td>
<td>Surface Water</td>
<td>Pre, Mid & Post Operations</td>
<td>5 µg/L</td>
<td>Standard Method 3150 B</td>
</tr>
<tr>
<td>Zinc</td>
<td>Groundwater</td>
<td>Pre, Mid & Post Operations</td>
<td>5 µg/L</td>
<td>Standard Method 3150 B</td>
</tr>
</tbody>
</table>
March 7, 2016

Mr. Steve Patten
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

RE: 16-02545 - Stiller Pond Soil Sampling

Dear Mr. Steve Patten,

Your project: Stiller Pond Soil Sampling, was received on Thursday February 04, 2016.

All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone us at 800 755-9295.

Respectfully

[Signature]

Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Enclosures: Data Report
Case Narrative

Reference: 16-02545

Project Notes

<table>
<thead>
<tr>
<th>Analytical Method</th>
<th>Notes</th>
<th>Created by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Note</td>
<td>8081B</td>
<td>4,4'-DDE - all results reported were confirmed by alternate column or GC/MS (SIM). The dilution factor is the conversion to dry weight based on the sample Total Solids.</td>
</tr>
</tbody>
</table>
Data Report

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR 97862

Reference Number: 16-02545
Project: Stiller Pond Soil Sampling

Report Date: 3/7/16
Date Received: 2/4/16
Approved by: jaa, mvp
Authorized by: Lawrence J Henderson, PhD
Position: Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>4.8</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>938</td>
<td>19.5</td>
<td>10.0</td>
<td>mg/Kg</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>1.6</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>820</td>
<td>15.7</td>
<td>10.0</td>
<td>mg/Kg</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>4.8</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>649</td>
<td>18.5</td>
<td>10.0</td>
<td>mg/Kg</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>3.0</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>529</td>
<td>15.4</td>
<td>10.0</td>
<td>mg/Kg</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor

If you have any questions concerning this report contact us at the above phone number.

Form: cRslt_2.rpt
Data Report

Soil #5 - Stiller Pond

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>14.3</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>762</td>
<td>14.7</td>
<td></td>
<td>mg/Kg</td>
<td>10.0</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
</tr>
</tbody>
</table>

Soil #6 - Stiller Pond

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>5.6</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>742</td>
<td>17.5</td>
<td></td>
<td>mg/Kg</td>
<td>10.0</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
</tr>
</tbody>
</table>

Soil #7 - Stiller Pond

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>5.5</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>767</td>
<td>18.1</td>
<td></td>
<td>mg/Kg</td>
<td>10.0</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
</tr>
</tbody>
</table>

Soil #8 - Stiller Pond

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>0.9</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>743</td>
<td>14.7</td>
<td></td>
<td>mg/Kg</td>
<td>10.0</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
</tr>
</tbody>
</table>

Soil #9 - Stiller Pond

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>3.0</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>703</td>
<td>17.1</td>
<td></td>
<td>mg/Kg</td>
<td>10.0</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
</tr>
</tbody>
</table>

Soil #10 - Stiller Pond

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>4.0</td>
<td>0.5</td>
<td>0.2</td>
<td>mg/Kg</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>2/8/16</td>
<td>KB</td>
<td>SOIL4500_150208</td>
<td>Analyzed by Soiltest</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>594</td>
<td>18.2</td>
<td></td>
<td>mg/Kg</td>
<td>10.0</td>
<td>6010B/3051</td>
<td>2/17/16</td>
<td>BJ</td>
<td>6010B_160217B</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR **Zip Code:** 97862

Lab Number: 06009
Field ID: Soil #10
Sample Description: Stiller Pond
Matrix: Soil
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 3540C

## CAS Compound	RESULT	Flag	UNITS	PQL	MRL	MDL	D.F.	Lab	COMMENT
- Organochlorine Pesticides									
309-00-2 ALDRIN	ND	ug/Kg	0.6	0.4	1.40	a			
319-84-6 BHC, ALPHA -	ND	ug/Kg	0.6	0.4	1.40	a			
319-85-7 BHC, BETA -	ND	ug/Kg	0.6	0.4	1.40	a			
58-89-9 LINDANE (BHC - GAMMA)	ND	ug/Kg	0.6	0.4	1.40	a			
319-86-8 BHC, DELTA -	ND	ug/Kg	0.6	0.4	1.40	a			
5103-71-9 ALPHA-CHLORDANE	ND	ug/Kg	0.6	0.4	1.40	a			
5103-72-4 GAMMA-CHLORDANE	ND	ug/Kg	0.6	0.4	1.40	a			
50-29-3 4,4' - DDT	ND	CV	ug/Kg	0.6	0.4	1.40	a		
72-55-9 4,4' - DDE	ND	ug/Kg	0.6	0.4	1.40	a			
72-54-8 4,4' - DDD	ND	ug/Kg	0.6	0.4	1.40	a			
60-57-1 DIELDRIN	ND	ug/Kg	0.6	0.4	1.40	a			
959-98-8 ENDOSULFAN I	ND	ug/Kg	0.6	0.4	1.40	a			
33213-65-1 ENDOSULFAN II	ND	ug/Kg	0.6	0.4	1.40	a			
1031-07-8 ENDOSULFAN SULFATE	ND	ug/Kg	0.6	0.4	1.40	a			
72-20-8 ENDRIN	ND	ug/Kg	0.6	0.4	1.40	a			
7421-93-4 ENDRIN ALDEHYDE	ND	ug/Kg	0.6	0.4	1.40	a			
53494-70-1 ENDRIN KETONE	ND	ug/Kg	0.6	0.4	1.40	a			
76-44-8 HEPTACHLOR	ND	CV	ug/Kg	0.6	0.4	1.40	a		
1024-57-3 HEPTACHLOR EPOXIDE "B"	ND	ug/Kg	0.6	0.4	1.40	a			
72-43-5 METHOXYCHLOR	ND	CV	ug/Kg	0.6	0.4	1.40	a		
8001-35-2 TOXAPHENE	ND	ug/Kg	350	250	1.40	a			

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number: 06008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field ID: Soil #9</td>
</tr>
<tr>
<td>Sample Description: Stiller Pond</td>
</tr>
<tr>
<td>Matrix: Soil</td>
</tr>
<tr>
<td>Sample Date: 2/3/16</td>
</tr>
<tr>
<td>Extraction Date: 2/8/16</td>
</tr>
<tr>
<td>Extraction Method: 3540C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>0.6</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>350</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 06007
Field ID: Soil #8
Sample Description: Stiller Pond
Matrix: Soil
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 3540C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>325</td>
<td>250</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Report Date: 3/7/16
Date Analyzed: 2/11/16
Analyst: CO

Project: Stiller Pond Soil Sampling
Reference Number: 16-02545

Lab Number: 06006
Field ID: Soil #7
Sample Description: Stiller Pond
Matrix: Soil
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 3540C

Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>350</td>
<td>250</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 06005
Field ID: Soil #6
Sample Description: Stiller Pond
Matrix: Soil
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 3540C

Reference Number: 16-02545
Project: Stiller Pond Soil Sampling

Report Date: 3/7/16
Date Analyzed: 2/11/16
Analyst: CO
Analytical Method: 8081B
Batch: 8081B_160208S
Approved By: rjk

Authorized by: Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>4.6</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>350</td>
<td>250</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Reference Number: 16-02545
Project: Stiller Pond Soil Sampling

Lab Number: 06004
Field ID: Soil #5
Sample Description: Stiller Pond
Matrix: Soil
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 3540C

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
Milton-Freewater, OR 97862

Report Date: 3/7/16
Date Analyzed: 2/11/16
Analyst: CO
Batch: 8081B_160208S
Approved By: rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>1.3</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>350</td>
<td>250</td>
<td></td>
<td>1.40</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 06003
Field ID: Soil #4
Sample Description: Stiller Pond
Matrix: Soil
Sample Date: 2/3/16
Extraction Date: 2/8/16
Extraction Method: 3540C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Organochlorine Pesticides</td>
<td></td>
</tr>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4" - DDT</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4" - DDE</td>
<td>2.0</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4" - DDD</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>350</td>
<td>250</td>
<td>1.40</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt

Reference Number: 16-02545
Project: Stiller Pond Soil Sampling

Report Date: 3/7/16
Date Analyzed: 2/11/16
Analyst: CO
Analytical Method: 8081B
Batch: 8081B_160208S
Approved By: rjk

Authorized by: Lawrence J Henderson, PhD
Director of Laboratories, Vice President
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>1.0</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.50</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>375</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number:</th>
<th>06001</th>
<th>Field ID:</th>
<th>Soil #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Description:</td>
<td>Stiller Pond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix:</td>
<td>Soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Date:</td>
<td>2/3/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraction Date:</td>
<td>2/8/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraction Method:</td>
<td>3540C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>1.2</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.5</td>
<td>0.4</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>325</td>
<td>250</td>
<td>1.30</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Laboratory Information
- **Lab Number:** 06000
- **Field ID:** Soil #1
- **Sample Description:**Still Pond
- **Matrix:** Soil
- **Sample Date:** 2/3/16
- **Extraction Date:** 2/8/16
- **Extraction Method:** 3540C

Client Name:
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Reference Number:
16-02545

Project:
Stiller Pond Soil Sampling

Report Date:
3/7/16

Date Analyzed:
2/11/16

Analyst:
CO

Batch:
8081B_160208S

Approved By:
rjk

Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ADRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'--DDT</td>
<td>ND</td>
<td>D6</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'-DDE</td>
<td>1.5</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'-DDD</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>CV</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>D6</td>
<td>ug/Kg</td>
<td>0.6</td>
<td>0.4</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/Kg</td>
<td>350</td>
<td>250</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
Calibration Check

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010B_160217B</td>
<td>TOTAL PHOSPHORUS</td>
<td>10.19</td>
<td>10</td>
<td>mg/L</td>
<td>6010B</td>
<td>102</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010B_160217B</td>
<td>TOTAL PHOSPHORUS</td>
<td>9.62</td>
<td>10</td>
<td>mg/L</td>
<td>6010B</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>8081B_160208S</td>
<td>4,4’ - DDD</td>
<td>47.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>94</td>
<td>78-132</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4’ - DDE</td>
<td>48.5</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>97</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4’ - DDT</td>
<td>51.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>102</td>
<td>56-158</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALDRIN</td>
<td>43.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>86</td>
<td>68-128</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALPHA-CHLORDANE</td>
<td>57.5</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, ALPHA -</td>
<td>37.5</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>75</td>
<td>37-134</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, BETA -</td>
<td>45.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>90</td>
<td>17-147</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, DELTA -</td>
<td>43.5</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>87</td>
<td>32-127</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIELDRIN</td>
<td>49.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>98</td>
<td>74-134</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN I</td>
<td>47.5</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>95</td>
<td>67-133</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN II</td>
<td>48.5</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>97</td>
<td>64-142</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN SULFATE</td>
<td>51.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>102</td>
<td>71-143</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN</td>
<td>47.5</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>95</td>
<td>30-147</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN ALDEHYDE</td>
<td>44.5</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>89</td>
<td>1-189</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN KETONE</td>
<td>54.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAMMA-CHLORDANE</td>
<td>45.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>90</td>
<td>74-124</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR</td>
<td>50.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>100</td>
<td>61-133</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>55.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>110</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINDANE (BHC - GAMMA)</td>
<td>44.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>88</td>
<td>17-140</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHOXYCHLOR</td>
<td>53.0</td>
<td>50</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>106</td>
<td>41-157</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Low-Level Lab Fortified Blank

Reference Number: **16-02545**
Report Date: **03/07/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8081B_160208s</td>
<td>4,4'-DDD</td>
<td>3.7</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>74</td>
<td>62-158</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4'-DDE</td>
<td>4.2</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>84</td>
<td>58-152</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4'-DDT</td>
<td>4.4</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>88</td>
<td>45-190</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALDRIN</td>
<td>3.8</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>76</td>
<td>54-154</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALPHA-CHLORDANE</td>
<td>4.3</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>86</td>
<td>56-156</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, ALPHA -</td>
<td>2.6</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>52</td>
<td>30-161</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, BETA -</td>
<td>4.4</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>88</td>
<td>14-176</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, DELTA -</td>
<td>3.0</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>60</td>
<td>26-152</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIELDRIN</td>
<td>3.7</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>74</td>
<td>59-161</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN I</td>
<td>4.3</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>86</td>
<td>54-160</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN II</td>
<td>5.2</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>104</td>
<td>51-170</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN SULFATE</td>
<td>4.4</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>88</td>
<td>57-172</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN</td>
<td>4.3</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>86</td>
<td>24-176</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN ALDEHYDE</td>
<td>0.5</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>10</td>
<td>1-189</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN KETONE</td>
<td>5.5</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>110</td>
<td>56-156</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAMMA-CHLORDANE</td>
<td>3.8</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>76</td>
<td>59-149</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR</td>
<td>4.5</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>90</td>
<td>49-160</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>5.7</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>114</td>
<td>58-152</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINDANE (BHC-GAMMA)</td>
<td>3.0</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>60</td>
<td>14-168</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHOXYCHLOR</td>
<td>5.4</td>
<td>5</td>
<td>ug/L</td>
<td>8081B</td>
<td>108</td>
<td>33-188</td>
<td>LLFB</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

Notation:

% Recovery = (Result of Analysis)/True Value * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010B_160217B</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>6010B</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010B_160217B</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.13</td>
<td>mg/L</td>
<td>6010B</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8081B_160208S</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4' - DDE</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,4' - DDT</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALDRIN</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, BETA -</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIELDRIN</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>ug/Kg</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOXAPHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8081B</td>
<td>0-0</td>
<td>MB</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: **16-02545**
Report Date: **03/07/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010B_160217B</td>
<td>TOTAL PHOSPHORUS</td>
<td>10.28</td>
<td>mg/L</td>
<td>6010B</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE DEPENDENT QUALITY CONTROL REPORT

Duplicate, Matrix Spike/Matrix Spike Duplicate and Confirmation Result Report

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate Result</th>
<th>QC Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6000</td>
<td>TOTAL PHOSPHORUS</td>
<td>938</td>
<td>927</td>
<td>mg/Kg</td>
<td>1.2</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TS_160205</td>
<td>TOTAL SOLIDS FOR CALCULATION</td>
<td>77.00</td>
<td>77.01</td>
<td>%</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL SOLIDS FOR CALCULATION</td>
<td>73.13</td>
<td>73.03</td>
<td>%</td>
<td>0.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of an analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Spike Result</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>TOTAL PHOSPHORUS</td>
<td>6010B_160217B</td>
<td>938</td>
<td>1288</td>
<td>1265</td>
<td>382</td>
<td>mg/Kg</td>
<td>92</td>
<td>86</td>
<td>75-125</td>
</tr>
</tbody>
</table>
Qualifier Definitions

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>The end calibration verification was significantly below the acceptance criterion of 80%. Low recovery is a result of this sample's high boiling material residue analyzed prior affecting chromatography. Data if reported, is suspect as biased low.</td>
</tr>
<tr>
<td>D6</td>
<td>Data is suspect, the matrix spike for this sample had little or no recovery. The LFB had acceptable recovery. A matrix affect is indicated.</td>
</tr>
<tr>
<td>EC</td>
<td>This compound is subject to erratic chromatographic behavior.</td>
</tr>
<tr>
<td>HQ</td>
<td>High QCS recovery due to increased detector response of the sample extract. The continuing calibration checks are within acceptance limits.</td>
</tr>
</tbody>
</table>

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.
February 18, 2016

Vista Work Order No. 1600091

Mr. Steven Patten
Walla Walla Basin Watershed Council
810 S. Main Street
Milton-Freewater, OR 97862

Dear Mr. Patten,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on February 04, 2016. This sample set was analyzed on a standard turn-around time, under your Project Name 'Stiller Pond'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director
Case Narrative

Sample Condition on Receipt:

Seven aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1668C

These samples were extracted and analyzed for 209 PCB congeners by EPA Method 1668C using a ZB-1 GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

The ion abundance ratio for the internal standard 13C-PCB-47 in sample "Mill Creek" did not meet the acceptance criteria. The recoveries and ion abundance ratios for all other internal standards in the QC and field samples were within method acceptance criteria.
TABLE OF CONTENTS

- Case Narrative .. 1
- Table of Contents .. 3
- Sample Inventory .. 4
- Analytical Results .. 5
- Qualifiers ... 40
- Certifications .. 41
- Sample Receipt ... 44
Sample Inventory Report

<table>
<thead>
<tr>
<th>Vista Sample ID</th>
<th>Client Sample ID</th>
<th>Sampled</th>
<th>Received</th>
<th>Components/Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600091-01</td>
<td>GW-146</td>
<td>03-Feb-16 09:50</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600091-02</td>
<td>GW-136</td>
<td>03-Feb-16 11:45</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600091-03</td>
<td>GW-145</td>
<td>03-Feb-16 12:45</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600091-04</td>
<td>GW-147</td>
<td>03-Feb-16 13:20</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600091-05</td>
<td>Mill Creek</td>
<td>03-Feb-16 11:30</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600091-06</td>
<td>Field Blank</td>
<td>03-Feb-16 10:40</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600091-07</td>
<td>Field Duplicate</td>
<td>03-Feb-16 10:10</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
</tbody>
</table>

Vista Project: 1600091
Client Project: Stiller Pond
ANALYTICAL RESULTS
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>4.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>3.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>3.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>3.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>J</td>
<td>4.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td></td>
<td>3.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>3.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td></td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td></td>
<td>0.818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td></td>
<td>0.669</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>ND</td>
<td>0.765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.687</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>ND</td>
<td>0.756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.882</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.909</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td></td>
<td>0.827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td></td>
<td>0.895</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>1.69</td>
<td></td>
<td></td>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>2.48</td>
<td></td>
<td></td>
<td>PCB-134/143</td>
<td>ND</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.39</td>
<td></td>
<td></td>
<td>PCB-135</td>
<td>ND</td>
<td>1.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.62</td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.47</td>
<td></td>
<td></td>
<td>PCB-138/163/164</td>
<td>ND</td>
<td>0.685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>2.16</td>
<td></td>
<td></td>
<td>PCB-139/149</td>
<td>ND</td>
<td>1.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.89</td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>2.07</td>
<td></td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.91</td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>2.15</td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>2.14</td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td>2.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.988</td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>1.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>1.35</td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.50</td>
<td></td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.91</td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
<td>PCB-153</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.78</td>
<td></td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td>0.872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td>0.907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.35</td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>0.914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>0.978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.60</td>
<td></td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td>0.916</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.54</td>
<td></td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>0.937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>0.921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td>0.762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td>0.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>1.33</td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td>0.807</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.63</td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>0.989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.50</td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>ND</td>
<td>0.848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
<td>PCB-175</td>
<td>ND</td>
<td>0.938</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: Method Blank

EPA Method 1668C

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>0.862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.809</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.674</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.566</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>0.964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>4.45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualifiers

- **PCB**: Polychlorinated Biphenyls
- **DL**: Sample specific estimated detection limit
- **EMPC**: Estimated maximum possible concentration
- **LCL-UCL**: Lower control limit - upper control limit

- **Work Order**: 1600091
- **Page**: 8 of 47
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 13C-PCB-1</td>
<td>59.4</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>60.2</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>65.1</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>75.0</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>65.9</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>72.2</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>85.2</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>77.7</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>84.1</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>97.8</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>97.1</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>82.0</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>92.1</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>86.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>94.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>91.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>85.5</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>91.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>90.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>82.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>98.9</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>93.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>95.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>96.9</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>100</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>99.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>95.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>90.9</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>86.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>87.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>95.1</td>
<td>10-145</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-157</td>
<td>92.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>93.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>98.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>103</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-170</td>
<td>95.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>96.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>79.8</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>99.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>83.9</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>90.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>94.5</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>75.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>99.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>CRS 13C-PCB-79</td>
<td>101</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>93.6</td>
<td>10-145</td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
EMPC - Estimated maximum possible concentration

Sample ID: E PA Method 1668C
Matrix: Aqueous
Sample Size: 1.00 L
QC Batch: B6B0038
Date Extracted: 09-Feb-2016 8:45
Lab Sample: B6B0038-BLK1
Date Analyzed: 11-Feb-16 15:23
Column: ZB-1
Analyst: MAS
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/L)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Limits</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>817</td>
<td>1000</td>
<td>81.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-1</td>
<td>80.2</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-3</td>
<td>832</td>
<td>1000</td>
<td>83.2</td>
<td>60 - 135</td>
<td>IS 13C-PCB-3</td>
<td>78.0</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>1530</td>
<td>2000</td>
<td>76.6</td>
<td>60 - 135</td>
<td>IS 13C-PCB-4</td>
<td>79.8</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-15</td>
<td>805</td>
<td>1000</td>
<td>80.5</td>
<td>60 - 135</td>
<td>IS 13C-PCB-11</td>
<td>81.2</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-19</td>
<td>959</td>
<td>1000</td>
<td>95.9</td>
<td>60 - 135</td>
<td>IS 13C-PCB-9</td>
<td>79.7</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-37</td>
<td>837</td>
<td>1000</td>
<td>83.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-19</td>
<td>85.5</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-54</td>
<td>957</td>
<td>1000</td>
<td>95.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-28</td>
<td>71.8</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-77</td>
<td>849</td>
<td>1000</td>
<td>84.9</td>
<td>60 - 135</td>
<td>IS 13C-PCB-32</td>
<td>88.1</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-81</td>
<td>808</td>
<td>1000</td>
<td>80.8</td>
<td>60 - 135</td>
<td>IS 13C-PCB-37</td>
<td>83.8</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-104</td>
<td>852</td>
<td>1000</td>
<td>85.2</td>
<td>60 - 135</td>
<td>IS 13C-PCB-47</td>
<td>89.2</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-105</td>
<td>748</td>
<td>1000</td>
<td>74.8</td>
<td>60 - 135</td>
<td>IS 13C-PCB-52</td>
<td>86.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>1700</td>
<td>2000</td>
<td>84.9</td>
<td>60 - 135</td>
<td>IS 13C-PCB-54</td>
<td>91.9</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-114</td>
<td>754</td>
<td>1000</td>
<td>75.4</td>
<td>60 - 135</td>
<td>IS 13C-PCB-70</td>
<td>90.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-123</td>
<td>901</td>
<td>1000</td>
<td>90.1</td>
<td>60 - 135</td>
<td>IS 13C-PCB-77</td>
<td>103</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-126</td>
<td>821</td>
<td>1000</td>
<td>82.1</td>
<td>60 - 135</td>
<td>IS 13C-PCB-80</td>
<td>93.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-155</td>
<td>902</td>
<td>1000</td>
<td>90.2</td>
<td>60 - 135</td>
<td>IS 13C-PCB-81</td>
<td>87.3</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-156</td>
<td>920</td>
<td>1000</td>
<td>92.0</td>
<td>60 - 135</td>
<td>IS 13C-PCB-95</td>
<td>92.7</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-157</td>
<td>956</td>
<td>1000</td>
<td>95.6</td>
<td>60 - 135</td>
<td>IS 13C-PCB-97</td>
<td>93.8</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-167</td>
<td>977</td>
<td>1000</td>
<td>97.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-101</td>
<td>93.8</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-169</td>
<td>955</td>
<td>1000</td>
<td>95.5</td>
<td>60 - 135</td>
<td>IS 13C-PCB-104</td>
<td>86.1</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-188</td>
<td>994</td>
<td>1000</td>
<td>99.4</td>
<td>60 - 135</td>
<td>IS 13C-PCB-105</td>
<td>105</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-189</td>
<td>933</td>
<td>1000</td>
<td>93.3</td>
<td>60 - 135</td>
<td>IS 13C-PCB-114</td>
<td>98.8</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-202</td>
<td>961</td>
<td>1000</td>
<td>96.1</td>
<td>60 - 135</td>
<td>IS 13C-PCB-118</td>
<td>101</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-205</td>
<td>912</td>
<td>1000</td>
<td>91.2</td>
<td>60 - 135</td>
<td>IS 13C-PCB-123</td>
<td>104</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-206</td>
<td>954</td>
<td>1000</td>
<td>95.4</td>
<td>60 - 135</td>
<td>IS 13C-PCB-126</td>
<td>106</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-208</td>
<td>1040</td>
<td>1000</td>
<td>104</td>
<td>60 - 135</td>
<td>IS 13C-PCB-127</td>
<td>104</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-209</td>
<td>930</td>
<td>1000</td>
<td>93.0</td>
<td>60 - 135</td>
<td>IS 13C-PCB-138</td>
<td>99.9</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-141</td>
<td>93.3</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-153</td>
<td>92.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-155</td>
<td>90.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-156</td>
<td>101</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-157</td>
<td>96.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-159</td>
<td>97.8</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-167</td>
<td>101</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-169</td>
<td>103</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-170</td>
<td>97.6</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-180</td>
<td>99.7</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-188</td>
<td>83.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-189</td>
<td>100</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-194</td>
<td>93.1</td>
<td>40 - 145</td>
</tr>
</tbody>
</table>
Sample ID: OPR

Matrix: Aqueous
Sample Size: 1.00 L
QC Batch: B6B0038
Date Extracted: 09-Feb-2016 8:45
Lab Sample: B6B0038-BS1
Date Analyzed: 11-Feb-16 13:13
Column: ZB-1
Analyst: MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/L)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>13C-PCB-202</td>
<td>99.8</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>13C-PCB-206</td>
<td>104</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>13C-PCB-208</td>
<td>92.6</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>13C-PCB-209</td>
<td>104</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS</td>
<td>13C-PCB-79</td>
<td>103</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS</td>
<td>13C-PCB-178</td>
<td>100</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCL-UCL: Lower control limit - upper control limit
Sample ID: GW-146

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 9:50

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600091-01
- **QC Batch:** B6B0038
- **Date Analyzed:** 11-Feb-2016 17:33
- **Column:** ZB-1
- **Analyst:** MAS
- **Date Extracted:** 09-Feb-2016 8:45

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>21.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>6.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>42.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>71.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>5.02</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-11</td>
<td>6.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>4.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>4.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>36.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>53.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>8.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>22.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>12.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.803</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>4.78</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>3.29</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>5.92</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>31.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29/30</td>
<td>0.541</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>28.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>4.28</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>6.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>3.27</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>6.37</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-44</td>
<td>8.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>3.39</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-46</td>
<td>2.10</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-47</td>
<td>4.50</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>2.60</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>1.74</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>7.56</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-53</td>
<td>2.91</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>0.862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>3.75</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>0.789</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>0.777</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>4.49</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>0.883</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>0.760</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>0.911</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>4.04</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>0.810</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-68</td>
<td>0.822</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>0.956</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-74</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>ND</td>
<td>0.659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.683</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>ND</td>
<td>0.733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>ND</td>
<td>2.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>1.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>ND</td>
<td>2.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td>2.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>3.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>2.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600091-01
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0038
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 11-Feb-16 17:33
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>2.38</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>3.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>2.09</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>2.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>2.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>2.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>2.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>1.11</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>2.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.56</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit
Sample ID: GW-146
Client Data
Name: Walla Walla Basin Watershed Council
Project: Stiller Pond
Date Collected: 03-Feb-2016 9:50

Sample Data
Matrix: Aqueous
Sample Size: 1.02 L

Laboratory Data
Lab Sample: 1600091-01
QC Batch: B6B0038
Date Analyzed: 11-Feb-16 17:33
Column: ZB-1
Analyst: MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.787</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.766</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.776</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.958</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte Conc. (pg/L)
DL
EMPC
Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total monoCB</td>
<td>27.7</td>
<td>28.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>150</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>63.2</td>
<td>64.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>7.14</td>
<td>7.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>ND</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total PCB: 481
Qualifiers: B

EMPC: Estimated maximum possible concentration
DL: Sample specific estimated detection limit
LCL-UCL: Lower control limit - upper control limit

Work Order 1600091
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>49.4</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-170</td>
<td>88.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>52.8</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-180</td>
<td>89.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>56.1</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-188</td>
<td>71.8</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>64.9</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-189</td>
<td>96.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>58.0</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-194</td>
<td>84.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>60.7</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-202</td>
<td>83.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>69.4</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-206</td>
<td>98.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>64.4</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-208</td>
<td>80.3</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>72.0</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-209</td>
<td>102</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>68.0</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-79</td>
<td>96.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>63.1</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-178</td>
<td>101</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>65.8</td>
<td>5-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>72.5</td>
<td>5-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>82.9</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>75.8</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>82.5</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>75.5</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>83.6</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>81.2</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>76.7</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>96.8</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>89.8</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>88.9</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>91.6</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>96.0</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>95.6</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>89.9</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>86.6</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>83.8</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>74.4</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>90.4</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>87.4</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>88.9</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>91.3</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>95.1</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: GW-136

<table>
<thead>
<tr>
<th>Client Data</th>
<th>Sample Data</th>
<th>Laboratory Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Walla Walla Basin Watershed Council</td>
<td>Matrix: Aqueous</td>
<td>Lab Sample: 1600091-02 Date Received: 04-Feb-2016 9:53</td>
</tr>
<tr>
<td>Project: Stiller Pond</td>
<td>Sample Size: 1.01 L</td>
<td>QC Batch: B6B0038 Date Extracted: 09-Feb-2016 8:45</td>
</tr>
<tr>
<td>Date Collected: 03-Feb-2016 11:45</td>
<td></td>
<td>Date Analyzed: 11-Feb-16 18:38 Column: ZB-1 Analyst: MAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>13.7</td>
<td>J</td>
<td>0.713</td>
<td></td>
<td>PCB-44</td>
<td>3.60</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td>PCB-45</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>4.00</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-46</td>
<td>ND</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>26.3</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-47</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>42.3</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>8.51</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-50</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>B</td>
<td>3.00</td>
<td></td>
<td>PCB-51</td>
<td>ND</td>
<td>0.903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>5.26</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-52/69</td>
<td>3.44</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>J</td>
<td>3.01</td>
<td></td>
<td>PCB-53</td>
<td>0.741</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>J</td>
<td>2.59</td>
<td></td>
<td>PCB-54</td>
<td>ND</td>
<td>0.778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>6.46</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-55</td>
<td>ND</td>
<td>0.657</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>15.2</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-56/60</td>
<td>1.24</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>8.34</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-57</td>
<td>ND</td>
<td>0.680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>24.2</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-58</td>
<td>ND</td>
<td>0.670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>3.77</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-61/70</td>
<td>ND</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>9.49</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-62</td>
<td>ND</td>
<td>0.820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>4.66</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-63</td>
<td>ND</td>
<td>0.655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>J</td>
<td>0.798</td>
<td></td>
<td>PCB-64</td>
<td>ND</td>
<td>0.845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>1.97</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-66/76</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>J</td>
<td>1.11</td>
<td></td>
<td>PCB-67</td>
<td>ND</td>
<td>0.698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>2.21</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-68</td>
<td>ND</td>
<td>0.691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>10.9</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-73</td>
<td>ND</td>
<td>0.743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>J</td>
<td>0.798</td>
<td></td>
<td>PCB-74</td>
<td>ND</td>
<td>0.660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>J</td>
<td>0.639</td>
<td></td>
<td>PCB-77</td>
<td>ND</td>
<td>0.630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>10.8</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-78</td>
<td>ND</td>
<td>0.627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-32</td>
<td>ND</td>
<td>J</td>
<td>0.742</td>
<td></td>
<td>PCB-79</td>
<td>ND</td>
<td>0.697</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-33</td>
<td>ND</td>
<td>J</td>
<td>0.838</td>
<td></td>
<td>PCB-80</td>
<td>ND</td>
<td>0.611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>J</td>
<td>0.810</td>
<td></td>
<td>PCB-81</td>
<td>ND</td>
<td>0.573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-82</td>
<td>ND</td>
<td>2.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-83</td>
<td>ND</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>1.47</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-84/92</td>
<td>ND</td>
<td>2.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>J</td>
<td>0.848</td>
<td></td>
<td>PCB-85/116</td>
<td>ND</td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>J</td>
<td>0.835</td>
<td></td>
<td>PCB-86</td>
<td>ND</td>
<td>2.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>J</td>
<td>1.30</td>
<td></td>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/46/71/72</td>
<td>2.45</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-88/91</td>
<td>ND</td>
<td>2.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>J</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>ND</td>
<td>J</td>
<td>2.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: GW-136
EPA Method 1668C

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 11:45

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600091-02
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0038
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 11-Feb-16 18:38
- **Column:** ZB-1
- **Analyst:** MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.30</td>
<td></td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>1.90</td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.46</td>
<td></td>
<td></td>
<td>PCB-138/163/164</td>
<td>0.624</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.31</td>
<td></td>
<td></td>
<td>PCB-139/149</td>
<td>ND</td>
<td>1.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>0.990</td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>1.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.76</td>
<td></td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>2.08</td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.84</td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>2.00</td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.99</td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td>1.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.52</td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>0.644</td>
<td></td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.92</td>
<td></td>
<td></td>
<td>PCB-153</td>
<td>0.628</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>0.842</td>
<td></td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.71</td>
<td></td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.36</td>
<td></td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.48</td>
<td></td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>1.53</td>
<td></td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>1.39</td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.72</td>
<td></td>
<td></td>
<td>PCB-175</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
<td>PCB-176</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.60</td>
<td></td>
<td></td>
<td>PCB-177</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td></td>
<td>PCB-178</td>
<td>ND</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.74</td>
<td></td>
<td></td>
<td>PCB-179</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Client Data
- **Name**: Walla Walla Basin Watershed Council
- **Project**: Stiller Pond
- **Date Collected**: 03-Feb-2016 11:45

Sample Data
- **Matrix**: Aqueous
- **Sample Size**: 1.01 L

Laboratory Data
- **Lab Sample**: 1600091-02
- **QC Batch**: B6B0038
- **Date Analyzed**: 11-Feb-16 18:38
- **Column**: ZB-1
- **Analyst**: MAS

Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-187</td>
<td>ND</td>
<td>0.692</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.737</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>2.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>2.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>0.696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.442</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte Conc. (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total monoCB</td>
<td>17.7</td>
<td>18.4</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Total diCB</td>
<td>88.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>93.0</td>
<td>94.1</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>13.1</td>
<td>20.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>ND</td>
<td>2.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>62.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>63.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>66.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>75.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>69.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>72.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>80.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>79.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>91.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>87.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>98.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>85.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>102</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>96.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>85.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>92.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>90.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>81.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>99.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>99.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>97.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>95.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>85.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>97.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>99.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 12:45

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600091-03
- **QC Batch:** B6B0038
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 11-Feb-2016 19:43
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>Qualifiers</th>
<th>EMPC</th>
<th>DL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>17.1</td>
<td></td>
<td></td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td>4.87</td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>33.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>53.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>4.15</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>9.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>7.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>29.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>4.46</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>13.4</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>5.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.10</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>3.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.771</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>1.74</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>ND</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>1.24</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>2.72</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-44</td>
<td>ND</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>ND</td>
<td>1.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>1.08</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>ND</td>
<td>0.823</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>4.23</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-53</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>1.32</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>2.54</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>1.04</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>ND</td>
<td>0.925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.913</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.906</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>ND</td>
<td>2.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>ND</td>
<td>1.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td>1.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>2.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.92</td>
<td></td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td>1.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.12</td>
<td></td>
<td></td>
<td>PCB-138/163/164</td>
<td>ND</td>
<td>0.720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>1.99</td>
<td></td>
<td></td>
<td>PCB-139/149</td>
<td>ND</td>
<td>2.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.75</td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>2.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.62</td>
<td></td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.66</td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>2.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.53</td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.84</td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>ND</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.83</td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td>2.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>2.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>1.13</td>
<td>0.890</td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td>2.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.53</td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.40</td>
<td>J</td>
<td></td>
<td>PCB-153</td>
<td>ND</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>2.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.69</td>
<td></td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>1.63</td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>2.02</td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.93</td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
<td>PCB-175</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.80</td>
<td></td>
<td></td>
<td>PCB-176</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.75</td>
<td></td>
<td></td>
<td>PCB-177</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>2.64</td>
<td></td>
<td></td>
<td>PCB-178</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
<td>PCB-179</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: GW-145

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 12:45

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600091-03
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0038
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 11-Feb-16 19:43
- **Column:** ZB-1
- **Analyst:** MAS
- **Work Order:** 1600091

Analyte Concentrations (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.804</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.481</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total monoCB	17.1		22.0	
Total diCB	115			B
Total triCB	120			
Total tetraCB	14.2		25.5	
Total pentaCB	1.40		2.29	
Total hexaCB	ND		0.720	
Total heptaCB	ND		1.43	

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600091-03
- **QC Batch:** B6B0038
- **Date Analyzed:** 11-Feb-16 19:43
- **Column:** ZB-1
- **Analyst:** MAS
- **Date Received:** 04-Feb-2016 9:53
- **Date Extracted:** 09-Feb-2016 8:45

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 12:45

Labeled Standard

<table>
<thead>
<tr>
<th>No.</th>
<th>Substance</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>13C-PCB-1</td>
<td>53.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-3</td>
<td>56.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-4</td>
<td>59.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-11</td>
<td>64.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-9</td>
<td>57.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-19</td>
<td>61.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-28</td>
<td>58.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-32</td>
<td>65.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-37</td>
<td>77.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-47</td>
<td>75.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-52</td>
<td>79.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-54</td>
<td>74.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-70</td>
<td>80.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-77</td>
<td>93.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-80</td>
<td>83.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-81</td>
<td>93.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-95</td>
<td>76.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-97</td>
<td>89.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-101</td>
<td>83.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-104</td>
<td>68.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-105</td>
<td>94.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-114</td>
<td>93.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-118</td>
<td>94.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-123</td>
<td>94.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-126</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-127</td>
<td>92.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-138</td>
<td>95.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-141</td>
<td>91.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-153</td>
<td>88.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-155</td>
<td>74.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-156</td>
<td>98.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-157</td>
<td>93.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-159</td>
<td>93.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-167</td>
<td>97.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-169</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-170</td>
<td>93.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-180</td>
<td>93.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-188</td>
<td>74.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-189</td>
<td>99.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-194</td>
<td>85.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-202</td>
<td>92.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-206</td>
<td>98.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-208</td>
<td>79.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-209</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-79</td>
<td>111</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13C-PCB-178</td>
<td>97.3</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **LCL-UCL** - Lower control limit - upper control limit
- **EMPC** - Estimated maximum possible concentration
- **DL** - Sample specific estimated detection limit

Work Order 1600091
Sample ID: GW-147

Client Data
Name: Walla Walla Basin Watershed Council
Project: Stiller Pond
Date Collected: 03-Feb-2016 13:20

Sample Data
Sample ID: GW-147
Contact: EPA Method 1668C
Matrix: Aqueous
Sample Size: 0.999 L

Laboratory Data
Lab Sample: 1600091-04
QC Batch: B6B0038
Date Collected: 03-Feb-2016 13:20
Date Analyzed: 09-Feb-2016 8:45
Column: ZB-1
Analyst: MAS

Analyte
Conc. (pg/L)
DL
EMPC
Qualifiers

PCB-1 16.3
PCB-2 ND 0.982
PCB-3 4.40 J
PCB-4/10 27.6
PCB-5/8 52.7
PCB-6 10.1
PCB-7/9 ND 4.75
PCB-11 8.36 B
PCB-12/13 ND 4.89
PCB-14 ND 4.22
PCB-15 7.67
PCB-16/32 17.6
PCB-17 9.41
PCB-18 26.6
PCB-19 5.02
PCB-20/21/33 10.3 J
PCB-22 5.30
PCB-23 ND 1.22
PCB-24/27 1.98 J
PCB-25 ND 1.01
PCB-26 2.94 J
PCB-28 12.5
PCB-29 ND 1.22
PCB-30 ND 0.856
PCB-31 11.4
PCB-34 ND 1.14
PCB-35 ND 1.31
PCB-36 ND 1.26
PCB-37 1.47 J
PCB-38 ND 1.32
PCB-39 ND 1.30
PCB-40 ND 2.50
PCB-41/64/71/72 ND 2.54
PCB-42/59 ND 1.21 J
PCB-43/49 2.70

Analyte
Conc. (pg/L)
DL
EMPC
Qualifiers

PCB-44 3.01
PCB-45 ND 2.09
PCB-46 ND 2.29
PCB-47 ND 2.96
PCB-48/75 ND 1.62
PCB-50 ND 2.10
PCB-51 ND 1.87
PCB-52/69 ND 2.02
PCB-53 ND 1.91
PCB-54 ND 1.59
PCB-55 ND 1.07
PCB-56/60 1.22 J
PCB-57 ND 1.14
PCB-58 ND 1.12
PCB-61/70 1.60 J
PCB-62 ND 1.58
PCB-63 ND 1.10
PCB-65 ND 1.63
PCB-66/76 1.41 J
PCB-67 ND 1.17
PCB-68 ND 1.33
PCB-73 ND 1.54
PCB-74 ND 0.638
PCB-77 ND 1.00
PCB-78 ND 1.13
PCB-79 ND 1.13
PCB-80 ND 0.992
PCB-81 ND 1.03
PCB-82 ND 2.17
PCB-83 ND 1.38
PCB-84/92 ND 1.93
PCB-85/116 ND 1.65
PCB-86 ND 2.23
PCB-87/117/125 ND 1.45
PCB-88/91 ND 2.23

Notes:
EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.08</td>
<td></td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td>1.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.36</td>
<td></td>
<td></td>
<td>PCB-138/163/164</td>
<td>ND</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.22</td>
<td></td>
<td></td>
<td>PCB-139/149</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.95</td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.94</td>
<td></td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td>1.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.77</td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.66</td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>2.20</td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>ND</td>
<td>1.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>2.19</td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td>1.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.68</td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.775</td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>0.840</td>
<td></td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
<td>PCB-153</td>
<td>ND</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>0.912</td>
<td></td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.54</td>
<td></td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.831</td>
<td></td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>ND</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.989</td>
<td></td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.885</td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.878</td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>1.61</td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>2.08</td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>2.42</td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>2.08</td>
<td></td>
<td></td>
<td>PCB-175</td>
<td>ND</td>
<td>1.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.57</td>
<td></td>
<td></td>
<td>PCB-176</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.93</td>
<td></td>
<td></td>
<td>PCB-177</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>1.89</td>
<td></td>
<td></td>
<td>PCB-178</td>
<td>ND</td>
<td>1.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.51</td>
<td></td>
<td></td>
<td>PCB-179</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.791</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.896</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.556</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>2.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>2.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>2.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.707</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.707</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.717</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.541</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>20.7</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total dCB</td>
<td>106</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tCB</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>9.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>2.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>2.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: GW-147

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 13:20

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.999 L

Laboratory Data
- **Lab Sample:** 1600091-04
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0038
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 16-Feb-2016 20:48
- **Column:** ZB-1
- **Analyst:** MAS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>48.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>49.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>50.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>58.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>54.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>62.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>69.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>64.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>66.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>82.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>91.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>81.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>86.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>77.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>88.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>86.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>66.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>99.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>93.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>93.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>96.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>98.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>89.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>86.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>90.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>78.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>95.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>94.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>91.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>97.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>100</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Data
- **Lab Sample:** 1600091-04
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0038
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 16-Feb-2016 20:48
- **Column:** ZB-1
- **Analyst:** MAS

Labeled Standard
- **%R**
- **LCL-UCL**
- **Qualifiers**

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>2.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>2.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>5.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>3.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>3.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>3.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>6.20</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>1.93</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>2.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>0.959</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-22</td>
<td>0.853</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>1.75</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.781</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-31</td>
<td>1.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>2.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>1.87</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-44</td>
<td>ND</td>
<td>2.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>ND</td>
<td>1.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>2.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>ND</td>
<td>7.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>ND</td>
<td>1.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>ND</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>1.55</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-53</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>ND</td>
<td>0.776</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>1.40</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>1.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>1.97</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>ND</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>ND</td>
<td>2.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>ND</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>2.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>2.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL/UCL - Lower control limit - upper control limit
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 11:30

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.989 L

Laboratory Data
- **Lab Sample:** 1600091-05
- **Date Received:** 04-Feb-2016 9:53
- **Date Extracted:** 09-Feb-2016 8:45
- **Column:** ZB-1
- **Analyst:** MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.02</td>
<td></td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>2.19</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.28</td>
<td></td>
<td></td>
<td>PCB-138/163/164</td>
<td>ND</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.14</td>
<td>1.54</td>
<td></td>
<td>PCB-139/149</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.67</td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>2.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.75</td>
<td></td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.61</td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.89</td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.88</td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.44</td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td>2.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>2.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>1.15</td>
<td>0.746</td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/107/109</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td>2.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.61</td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.82</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-153</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.50</td>
<td></td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td>0.959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>0.972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>1.35</td>
<td></td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-125</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td>0.538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td>0.850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>1.50</td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td>0.914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>1.86</td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.61</td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>ND</td>
<td>0.961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
<td>PCB-175</td>
<td>ND</td>
<td>0.986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.50</td>
<td></td>
<td></td>
<td>PCB-176</td>
<td>ND</td>
<td>0.709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
<td>PCB-177</td>
<td>ND</td>
<td>0.977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>2.07</td>
<td></td>
<td></td>
<td>PCB-178</td>
<td>ND</td>
<td>0.961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>0.742</td>
<td></td>
<td></td>
<td>PCB-179</td>
<td>ND</td>
<td>0.742</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit
Sample ID: Mill Creek

<table>
<thead>
<tr>
<th>Client Data</th>
<th>Sample Data</th>
<th>Laboratory Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Walla Walla Basin Watershed Council</td>
<td>Matrix: Aqueous</td>
<td>Lab Sample: 1600091-05</td>
</tr>
<tr>
<td>Project: Stiller Pond</td>
<td>Sample Size: 0.989 L</td>
<td>QC Batch: B6B0038</td>
</tr>
<tr>
<td>Date Collected: 03-Feb-2016 11:30</td>
<td></td>
<td>Date Received: 04-Feb-2016 9:53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Date Extracted: 09-Feb-2016 8:45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>1.01</td>
<td>1.01</td>
<td></td>
<td>Total octaCB</td>
<td>ND</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.917</td>
<td>1.01</td>
<td></td>
<td>Total nonaCB</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.909</td>
<td>1.01</td>
<td></td>
<td>DecaCB</td>
<td>ND</td>
<td>0.751</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.844</td>
<td>1.01</td>
<td></td>
<td>Total PCB</td>
<td>31.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.772</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.881</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.709</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-187</td>
<td>ND</td>
<td>0.679</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.671</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.548</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.633</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.665</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.712</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.669</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>1.05</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.876</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.45</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>1.03</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.59</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.62</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.16</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.09</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.18</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>1.12</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>1.00</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.620</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>1.00</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.693</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.703</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.751</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>2.69</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>6.20</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>6.38</td>
<td>8.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>14.5</td>
<td>19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>4.01</td>
<td>6.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>ND</td>
<td>4.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 11:30

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.989 L

Laboratory Data
- **Lab Sample:** 1600091-05
- **Date Received:** 04-Feb-2016 9:53
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 11-Feb-16 21:53
- **Column:** ZB-1
- **Analyst:** MAS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>50.0</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-170</td>
<td>92.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>58.0</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-180</td>
<td>94.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>57.3</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-188</td>
<td>83.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>66.2</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-189</td>
<td>100</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>73.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-194</td>
<td>80.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>64.4</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-202</td>
<td>90.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>68.8</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-206</td>
<td>93.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>74.8</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-208</td>
<td>79.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>73.8</td>
<td>5 - 145</td>
<td>I</td>
<td>13C-PCB-209</td>
<td>98.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>59.1</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-79</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>69.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>98.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>65.5</td>
<td>5 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>76.8</td>
<td>5 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>91.8</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>85.0</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>88.3</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>76.6</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>87.1</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>86.7</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>72.4</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>98.2</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>99.4</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>92.9</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>97.1</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>96.1</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>94.7</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>89.0</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>93.5</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>88.2</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>93.6</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>98.8</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>97.7</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>96.7</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit
Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>1.63</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>2.79</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>2.78</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>6.16</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>4.96</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>5.10</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>5.03</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>ND</td>
<td>3.34</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>4.43</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.82</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>3.90</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>0.993</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>1.01</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>1.19</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>1.25</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>0.571</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.942</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.906</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.742</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.999</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.886</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>ND</td>
<td>0.534</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.906</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.791</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>ND</td>
<td>0.876</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-32</td>
<td>ND</td>
<td>0.843</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.901</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.871</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.839</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.911</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.897</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>1.45</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>ND</td>
<td>0.931</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>1.01</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>ND</td>
<td>1.19</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-44</td>
<td>ND</td>
<td>1.43</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>ND</td>
<td>1.30</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>1.42</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>ND</td>
<td>4.01</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.939</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>1.25</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>ND</td>
<td>1.16</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>0.989</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-53</td>
<td>ND</td>
<td>1.19</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>0.954</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.692</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>ND</td>
<td>0.770</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>0.819</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>0.806</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>ND</td>
<td>0.814</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>0.917</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>0.788</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>0.946</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>ND</td>
<td>0.777</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>0.840</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>0.930</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>0.958</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>ND</td>
<td>0.756</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>ND</td>
<td>0.695</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.765</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>ND</td>
<td>0.735</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.643</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.699</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>ND</td>
<td>2.72</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>1.67</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>ND</td>
<td>2.41</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td>1.99</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>2.68</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>1.74</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>2.56</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Field Blank
Matrix: Aqueous
Sample Size: 0.990 L
Emitted Maximum Possible Concentration (EMPC):

Notes:
- Sample specific estimated detection limit (DL)
- Lower control limit - upper control limit (LCL-UCL)
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td>PCB-136</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>2.54</td>
<td></td>
<td></td>
<td></td>
<td>PCB-138/163/164</td>
<td>0.704</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>1.59</td>
<td></td>
<td></td>
<td></td>
<td>PCB-139/149</td>
<td>0.947</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>2.13</td>
<td></td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>2.07</td>
<td></td>
<td></td>
<td></td>
<td>PCB-141</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>2.42</td>
<td></td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>2.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>2.41</td>
<td></td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>1.84</td>
<td></td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>0.922</td>
<td></td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>2.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>0.504</td>
<td></td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>1.51</td>
<td></td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>1.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
<td>PCB-151</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.14</td>
<td></td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>1.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>1.49</td>
<td></td>
<td></td>
<td></td>
<td>PCB-153</td>
<td>0.695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>1.93</td>
<td></td>
<td></td>
<td></td>
<td>PCB-154</td>
<td>1.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td>PCB-155</td>
<td>1.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
<td>PCB-156</td>
<td>0.798</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>1.39</td>
<td></td>
<td></td>
<td></td>
<td>PCB-157</td>
<td>0.836</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>1.63</td>
<td></td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>0.949</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td>PCB-159</td>
<td>0.932</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
<td>PCB-166</td>
<td>0.998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>1.55</td>
<td></td>
<td></td>
<td></td>
<td>PCB-167</td>
<td>0.844</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td>PCB-168</td>
<td>0.885</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>0.874</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>0.730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>0.723</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>1.54</td>
<td></td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>0.777</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>0.953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>0.817</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>1.32</td>
<td></td>
<td></td>
<td></td>
<td>PCB-175</td>
<td>0.925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td>PCB-176</td>
<td>0.665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
<td>PCB-177</td>
<td>0.831</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit
Sample ID: Field Blank

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Still Pond
- **Date Collected:** 03-Feb-2016 10:40

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.990 L

Laboratory Data
- **Lab Sample:** 1600091-06
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0038
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 11-Feb-16 16:28

Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.664</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-187</td>
<td>ND</td>
<td>0.636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>2.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>ND</td>
<td>6.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>1.19</td>
<td>2.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>5.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>1.14</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>ND</td>
<td>0.947</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octaCB</td>
<td>ND</td>
<td>0.589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total nonaCB</td>
<td>ND</td>
<td>0.789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DecaCB</td>
<td>ND</td>
<td>0.556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PCB</td>
<td>8.26</td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
Sample ID: Field Blank

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:40

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.990 L

Laboratory Data
- **Lab Sample:** 1600091-06
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0038
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 11-Feb-16 16:28
- **Column:** ZB-1
- **Analyst:** MAS

Labeled Standard

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>52.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>54.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>57.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>58.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>66.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>88.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>74.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>99.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>83.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>78.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>76.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>88.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>98.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>91.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>93.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>87.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>96.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>92.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>77.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>108</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>114</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>93.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>94.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>91.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>86.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>95.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>110</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Labeled Standard

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-170</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>80.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>94.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>97.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>118</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>93.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>116</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-79</td>
<td>85.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>91.5</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Qualifiers

- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- LCL-UCL - Lower control limit - upper control limit

Work Order 1600091

Page 35 of 47
Sample ID: Field Duplicate

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:10

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600091-07
- **QC Batch:** B6B0038
- **Date Analysis:** 11-Feb-16 22:58
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>Qualifiers</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>18.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.04</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>5.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>36.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>60.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>3.26</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>5.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>1.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>25.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>39.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>6.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>19.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.824</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>1.65</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.825</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.469</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>15.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.767</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.861</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.832</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>3.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.871</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.858</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.934</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>5.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>ND</td>
<td>4.39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td></td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1.57</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td></td>
<td>2.97</td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td></td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td></td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td></td>
<td>2.23</td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td></td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>0.803</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td></td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td></td>
<td>2.52</td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td></td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td></td>
<td>0.860</td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td></td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td></td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td></td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td></td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td></td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td></td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td></td>
<td>0.941</td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td></td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td></td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td></td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td></td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td></td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td></td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td></td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td></td>
<td>0.995</td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td></td>
<td>0.837</td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td></td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td></td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td></td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td></td>
<td>0.895</td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td></td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td></td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td></td>
<td>1.98</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
Sample ID: Field Duplicate

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:10

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600091-07
- **QC Batch:** B6B0038
- **Date Analyzed:** 11-Feb-16 22:58
- **Column:** ZB-1
- **Analyst:** MAS

Analyte

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.662</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-187</td>
<td>ND</td>
<td>0.524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td></td>
<td>0.679</td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>0.922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>0.606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total monoCB
- 25.3

Total diCB
- 124

Total triCB
- 161

Total tetraCB
- 31.2

Total pentaCB
- 2.37

Total hexaCB
- ND

Total heptaCB
- ND

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

Table 1:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octaCB</td>
<td>ND</td>
<td></td>
<td>0.679</td>
<td></td>
</tr>
<tr>
<td>Total nonaCB</td>
<td>ND</td>
<td></td>
<td>0.797</td>
<td></td>
</tr>
<tr>
<td>Total DecaCB</td>
<td>ND</td>
<td></td>
<td>0.530</td>
<td></td>
</tr>
<tr>
<td>Total PCB</td>
<td>344</td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

Work Order 1600091

Page 38 of 47
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:10

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600091-07
- **Date Received:** 04-Feb-2016 9:53
- **Date Extracted:** 09-Feb-2016 8:45
- **Date Analyzed:** 11-Feb-16 22:58
- **Column:** ZB-1
- **Analyst:** MAS

Sample Analysis

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>71.9</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>72.8</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>75.0</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>79.0</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>75.1</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>72.3</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>87.2</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>77.5</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>91.1</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>81.8</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>76.4</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>79.8</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>85.1</td>
<td>5</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>85.8</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>81.7</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>88.7</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>82.9</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>86.1</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>84.9</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>76.1</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>98.9</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>93.8</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>90.6</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>92.8</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>97.5</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>97.6</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>90.5</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>87.9</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>85.1</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>80.2</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>93.8</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>90.7</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>92.5</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>96.7</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>98.6</td>
<td>10</td>
<td>-145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-170</td>
<td>87.2</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>91.9</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>76.1</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>95.5</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>91.3</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>83.5</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>106</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>83.6</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>111</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-79</td>
<td>99.0</td>
<td>10</td>
<td>-145</td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>99.8</td>
<td>10</td>
<td>-145</td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit
DATA QUALIFIERS & ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>This compound was also detected in the method blank.</td>
</tr>
<tr>
<td>D</td>
<td>Dilution</td>
</tr>
<tr>
<td>E</td>
<td>The associated compound concentration exceeded the calibration range of the instrument.</td>
</tr>
<tr>
<td>H</td>
<td>Recovery and/or RPD was outside laboratory acceptance limits.</td>
</tr>
<tr>
<td>I</td>
<td>Chemical Interference</td>
</tr>
<tr>
<td>J</td>
<td>The amount detected is below the Lower Calibration Limit of the instrument.</td>
</tr>
<tr>
<td>*</td>
<td>See Cover Letter</td>
</tr>
<tr>
<td>Conc.</td>
<td>Concentration</td>
</tr>
<tr>
<td>DL</td>
<td>Sample-specific estimated detection limit</td>
</tr>
<tr>
<td>MDL</td>
<td>The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.</td>
</tr>
<tr>
<td>EMPC</td>
<td>Estimated Maximum Possible Concentration</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable</td>
</tr>
<tr>
<td>RL</td>
<td>Reporting Limit – concentrations that correspond to low calibration point</td>
</tr>
<tr>
<td>ND</td>
<td>Not Detected</td>
</tr>
<tr>
<td>TEQ</td>
<td>Toxic Equivalency</td>
</tr>
</tbody>
</table>

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.
CERTIFICATIONS

<table>
<thead>
<tr>
<th>Accrediting Authority</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Department of Health – ELAP</td>
<td>2892</td>
</tr>
<tr>
<td>DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005</td>
<td>3091.01</td>
</tr>
<tr>
<td>Florida Department of Health</td>
<td>E87777</td>
</tr>
<tr>
<td>Hawaii Department of Health</td>
<td>N/A</td>
</tr>
<tr>
<td>Louisiana Department of Environmental Quality</td>
<td>01977</td>
</tr>
<tr>
<td>Maine Department of Health</td>
<td>2014022</td>
</tr>
<tr>
<td>Nevada Division of Environmental Protection</td>
<td>CA004132016-1</td>
</tr>
<tr>
<td>New Jersey Department of Environmental Protection</td>
<td>CA003</td>
</tr>
<tr>
<td>New York Department of Health</td>
<td>11411</td>
</tr>
<tr>
<td>Oregon Laboratory Accreditation Program</td>
<td>4042-004</td>
</tr>
<tr>
<td>Pennsylvania Department of Environmental Protection</td>
<td>012</td>
</tr>
<tr>
<td>South Carolina Department of Health</td>
<td>87002001</td>
</tr>
<tr>
<td>Tennessee department of Environmental Quality</td>
<td>TN02996</td>
</tr>
<tr>
<td>Texas Commission on Environmental Quality</td>
<td>T104704189-15-6</td>
</tr>
<tr>
<td>Virginia Department of General Services</td>
<td>7923</td>
</tr>
<tr>
<td>Washington Department of Ecology</td>
<td>C584</td>
</tr>
<tr>
<td>Wisconsin Department of Natural Resources</td>
<td>998036160</td>
</tr>
</tbody>
</table>

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.
NELAP Accredited Test Methods

MATRIX: Air

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Polychlorinated p-Dioxins & Polychlorinated Dibenzofurans</td>
<td>EPA 23</td>
</tr>
</tbody>
</table>

MATRIX: Biological Tissue

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Polychlorinated p-Dioxins & Polychlorinated Dibenzofurans</td>
<td>EPA 23</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>

MATRIX: Drinking Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
</tbody>
</table>

MATRIX: Non-Potable Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Dioxin by GC/HRMS</td>
<td>EPA 613</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
<tr>
<td>Description of Test</td>
<td>Method</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>
CHAIN OF CUSTODY

FOR LABORATORY USE ONLY

- **Laboratory Project ID:** 1600091
- **Storage ID:** W
- **Temp:** -0.7°C
- **TAT:** (Check One):
 - Standard: ☑ 21 Days
 - Rush (surcharge may apply):
 - ☐ 14 days ☑ 7 days Specify:

Relinquished by: Steven Patten
Date: 2-3-16
Time: 14:00

Received by: (Signature and Printed Name)
Time: 14:00

Relinquished by: (Signature and Printed Name)
Date: 2-3-16
Time: 14:00

See “Sample Log-in Checklist” for additional sample information

SHIP TO: Vista Analytical Laboratory
1104 Windfield Way
El Dorado Hills, CA 95762
(916) 673-1520 • Fax (916) 673-0106

Method of Shipment: UPS

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Location/Sample Description</th>
<th>Add Analysis(s) Requested</th>
<th>Container(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLW-146</td>
<td>2-3-16</td>
<td>9:50</td>
<td>STILWY PARK</td>
<td>Z A AC</td>
<td>X</td>
</tr>
<tr>
<td>GLW-131</td>
<td>2-3-16</td>
<td>11:15</td>
<td>STILWY PARK</td>
<td>Z A AC</td>
<td>X</td>
</tr>
<tr>
<td>GLW-145</td>
<td>2-3-16</td>
<td>12:15</td>
<td>STILWY PARK</td>
<td>Z A AC</td>
<td>X</td>
</tr>
<tr>
<td>GLW-147</td>
<td>2-3-16</td>
<td>12:40</td>
<td>STILWY PARK</td>
<td>Z A AC</td>
<td>X</td>
</tr>
<tr>
<td>MILL CLEAN</td>
<td>2-3-16</td>
<td>11:30</td>
<td>STILWY PARK</td>
<td>Z A AC</td>
<td>X</td>
</tr>
</tbody>
</table>

Special Instructions/Comments:

SEND DOCUMENTATION AND RESULTS TO:

- **Name:** Steven Patten
- **Company:** LOUGHLIN
- **Address:** 510 S MAIN
- **City:** Medford
 State: OR
 Zip: 97502
- **Phone:** 541-938-2170
 Fax:
- **Email:** steven.patten@louglinc.org

Matrix Types: DW = Drinking Water, EF = Effluent, PP = PulP/Paper,
SD = Sediment, SL = Sludge, SO = Soil, WW = Wastewater, B = Blood/Serum
AQ = Aqueous, O = Other

- **Container Types:** A = 1 Liter Amber, G = Glass Jar
 P = PUF, T = MMS Train, O = Other

- **Bottle Preservative Type:** T = Triosulfate, O = Other

Work Order 1600091 WHITE - ORIGINAL YELLOW - ARCHIVE PINK - COPY Page 44 of 47
CHAIN OF CUSTODY

FOR LABORATORY USE ONLY

<table>
<thead>
<tr>
<th>Laboratory Project ID</th>
<th>Storage ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>160091</td>
<td>WR3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TAT: (Check One):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard: 21 Days</td>
</tr>
<tr>
<td>Rush (surcharge may apply):</td>
</tr>
<tr>
<td>0 14 days 0 7 days Specify:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project I.D.</th>
<th>P.O.#</th>
<th>Sampler:</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS POND</td>
<td></td>
<td>STEVEN PAATIEN</td>
</tr>
</tbody>
</table>

See "Sample Log-in Checklist" for additional sample information

SHIP TO: Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 (916) 673-1520 • Fax (916) 673-0106

Method of Shipment:

Add Analysis(es) Requested

<table>
<thead>
<tr>
<th>Container(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Location/Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELD BLANK</td>
<td>3/3/16</td>
<td>10:40</td>
<td>STEVENS POND</td>
</tr>
<tr>
<td>FIELD BLANK</td>
<td>23/16</td>
<td>10:00</td>
<td>STEVENS POND</td>
</tr>
</tbody>
</table>

Special Instructions/Comments:

SEND DOCUMENTATION AND RESULTS TO:

Name:	STEVEN PAATIEN
Company:	WINBUCK
Address:	510 S. MAIN
City:	MELTON - FREDERICK
State:	OK
Zip:	77802
Phone:	541-935-2170
Fax:	541-935-2170
Email:	STEVEN PAATIEN @ WINBUCK

Matrix Types:
- DW = Drinking Water
- EF = Effluent
- PP = Pulp/Paper
- SD = Sediment
- SL = Sludge
- SO = Soil
- WW = Wastewater
- B = Blood/Serum
- AQ = Aqueous
- O = Other

Container Types:
- A = 1 Liter Amber
- G = Glass Jar
- P = PUF
- T = MMS Train
- O = Other
SAMPLE LOG-IN CHECKLIST

Vista Project #: 1600091

<table>
<thead>
<tr>
<th>Samples Arrival</th>
<th>Date/Time</th>
<th>Initials:</th>
<th>Location: WR-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>02/04/16 0953</td>
<td>VASB</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logged In:</th>
<th>Date/Time</th>
<th>Initials:</th>
<th>Location: WR-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>02/04/16 1238</td>
<td>JBB</td>
<td>A4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delivered By:</th>
<th>FedEx</th>
<th>UPS</th>
<th>On Trac</th>
<th>DHL</th>
<th>Hand Delivered</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservation:</td>
<td>Ice</td>
<td>Blue Ice</td>
<td>Dry Ice</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp °C:</td>
<td>-0.1 (uncorrected)</td>
<td>0958</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp °C:</td>
<td>-0.7 (corrected)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Thermometer ID: | IR-2 |

Adequate Sample Volume Received?	YES
Holding Time Acceptable?	YES
Shipping Container(s) Intact?	YES
Shipping Custody Seals Intact?	YES
Shipping Documentation Present?	YES
Airbill	1 of 2 Trk # 1E6E3F70181855824
Sample Container Intact?	YES
Sample Custody Seals Intact?	YES
Chain of Custody / Sample Documentation Present?	YES
COC Anomaly/Sample Acceptance Form completed?	YES

If Chlorinated or Drinking Water Samples, Acceptable Preservation?

<table>
<thead>
<tr>
<th>Na₂S₂O₃ Preservation Documented?</th>
<th>COC</th>
<th>Sample Container</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shipping Container</th>
<th>Vista</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments:</td>
<td></td>
</tr>
</tbody>
</table>

Sample labels: GW-147 A³B
GW-146
GW-136
GW-45
Mill Creek

Sample Login 11/2013 ckt
SAMPLE LOG-IN CHECKLIST

Samples Arrival:
- **Date/Time:** 02/04/16 0953
- **Initials:** VB
- **Location:** WR-3
- **Shelf/Rack:** NA

Logged In:
- **Date/Time:** 02/04/16 1230
- **Initials:** VB
- **Location:** WR-5
- **Shelf/Rack:** A4

Delivered By:
- FedEx
- UPS
- On Trac
- DHL
- Hand Delivered
- Other

Preservation:
- Ice
- Blue Ice
- Dry Ice
- None

Temp °C:
- Uncorrected: 1.0
- Corrected: 0.4

Time:
- 0955

Thermometer ID:
- IR-2

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adequate Sample Volume Received?
- ✓

Holding Time Acceptable?
- ✓

Shipping Container(s) Intact?
- ✓

Shipping Custody Seals Intact?
- ✓

Shipping Documentation Present?
- ✓

Airbill:
- 2 of 2
- Trk #: ZE62F3F7018851622
- ✓

Sample Container Intact?
- ✓

Sample Custody Seals Intact?
- ✓

Chain of Custody / Sample Documentation Present?
- ✓

COC Anomaly/Sample Acceptance Form completed?
- ✓

If Chlorinated or Drinking Water Samples, Acceptable Preservation?
- None

Na₂S₂O₃ Preservation Documented?
- Vista

Shipping Container:
- Client
- Retain
- Return
- Dispose

Comments:
March 01, 2016

Vista Work Order No. 1600092

Mr. Steven Patten
Walla Walla Basin Watershed Council
810 S. Main Street
Milton-Freewater, OR 97862

Dear Mr. Patten,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on February 04, 2016. This sample set was analyzed on a standard turn-around time, under your Project Name 'Stiller Pond'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director
Vista Work Order No. 1600092
Case Narrative

Sample Condition on Receipt:

Ten soil samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1668C

These samples were extracted and analyzed for 209 PCB congeners by EPA Method 1668C using a ZB-1 GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Narrative</td>
<td>1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Sample Inventory</td>
<td>4</td>
</tr>
<tr>
<td>Analytical Results</td>
<td>5</td>
</tr>
<tr>
<td>Qualifiers</td>
<td>52</td>
</tr>
<tr>
<td>Certifications</td>
<td>53</td>
</tr>
<tr>
<td>Sample Receipt</td>
<td>56</td>
</tr>
</tbody>
</table>
Sample Inventory Report

<table>
<thead>
<tr>
<th>Vista Sample ID</th>
<th>Client Sample ID</th>
<th>Sampled</th>
<th>Received</th>
<th>Components/Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600092-01</td>
<td>Soil #1</td>
<td>03-Feb-16 09:55</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
<tr>
<td>1600092-02</td>
<td>Soil #2</td>
<td>03-Feb-16 10:00</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
<tr>
<td>1600092-03</td>
<td>Soil #3</td>
<td>03-Feb-16 10:12</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
<tr>
<td>1600092-04</td>
<td>Soil #4</td>
<td>03-Feb-16 10:17</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
<tr>
<td>1600092-05</td>
<td>Soil #5</td>
<td>03-Feb-16 10:27</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
<tr>
<td>1600092-06</td>
<td>Soil #6</td>
<td>03-Feb-16 10:32</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
<tr>
<td>1600092-07</td>
<td>Soil #7</td>
<td>03-Feb-16 10:42</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
<tr>
<td>1600092-08</td>
<td>Soil #8</td>
<td>03-Feb-16 10:47</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
<tr>
<td>1600092-09</td>
<td>Soil #9</td>
<td>03-Feb-16 10:55</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
<tr>
<td>1600092-10</td>
<td>Soil #10</td>
<td>03-Feb-16 11:00</td>
<td>04-Feb-16 09:53</td>
<td>Amber Glass, 120 mL</td>
</tr>
</tbody>
</table>

Vista Project: 1600092
Client Project: Stiller Pond
ANALYTICAL RESULTS
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>0.844</td>
<td></td>
<td></td>
<td>PCB-43/49</td>
<td>ND</td>
<td>0.346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>0.875</td>
<td></td>
<td></td>
<td>PCB-44</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>0.873</td>
<td></td>
<td></td>
<td>PCB-45</td>
<td>ND</td>
<td>0.379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>2.93</td>
<td></td>
<td></td>
<td>PCB-46</td>
<td>ND</td>
<td>0.415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>2.42</td>
<td></td>
<td></td>
<td>PCB-47</td>
<td>ND</td>
<td>0.303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>2.48</td>
<td></td>
<td></td>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>2.45</td>
<td></td>
<td></td>
<td>PCB-50</td>
<td>ND</td>
<td>0.394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>ND</td>
<td>2.32</td>
<td></td>
<td></td>
<td>PCB-51</td>
<td>ND</td>
<td>0.339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>2.35</td>
<td></td>
<td></td>
<td>PCB-52/69</td>
<td>ND</td>
<td>0.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>2.03</td>
<td></td>
<td></td>
<td>PCB-53</td>
<td>ND</td>
<td>0.347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>2.07</td>
<td></td>
<td></td>
<td>PCB-54</td>
<td>ND</td>
<td>0.299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>0.321</td>
<td></td>
<td></td>
<td>PCB-55</td>
<td>ND</td>
<td>0.237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.278</td>
<td></td>
<td></td>
<td>PCB-56/60</td>
<td>ND</td>
<td>0.264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>0.300</td>
<td></td>
<td></td>
<td>PCB-57</td>
<td>ND</td>
<td>0.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.318</td>
<td></td>
<td></td>
<td>PCB-58</td>
<td>ND</td>
<td>0.251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>0.256</td>
<td></td>
<td></td>
<td>PCB-61/70</td>
<td>ND</td>
<td>0.254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.254</td>
<td></td>
<td></td>
<td>PCB-62</td>
<td>ND</td>
<td>0.268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.245</td>
<td></td>
<td></td>
<td>PCB-63</td>
<td>ND</td>
<td>0.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.205</td>
<td></td>
<td></td>
<td>PCB-65</td>
<td>ND</td>
<td>0.276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.270</td>
<td></td>
<td></td>
<td>PCB-66/76</td>
<td>ND</td>
<td>0.242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.239</td>
<td></td>
<td></td>
<td>PCB-67</td>
<td>ND</td>
<td>0.262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>ND</td>
<td>0.239</td>
<td>0.196</td>
<td></td>
<td>PCB-68</td>
<td>ND</td>
<td>0.226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.245</td>
<td></td>
<td></td>
<td>PCB-73</td>
<td>ND</td>
<td>0.279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.201</td>
<td></td>
<td></td>
<td>PCB-74</td>
<td>ND</td>
<td>0.235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>ND</td>
<td>0.236</td>
<td></td>
<td></td>
<td>PCB-77</td>
<td>ND</td>
<td>0.224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.228</td>
<td></td>
<td></td>
<td>PCB-78</td>
<td>ND</td>
<td>0.242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.229</td>
<td></td>
<td></td>
<td>PCB-79</td>
<td>ND</td>
<td>0.251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.221</td>
<td></td>
<td></td>
<td>PCB-80</td>
<td>ND</td>
<td>0.220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.213</td>
<td></td>
<td></td>
<td>PCB-81</td>
<td>ND</td>
<td>0.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.231</td>
<td></td>
<td></td>
<td>PCB-82</td>
<td>ND</td>
<td>0.745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.228</td>
<td></td>
<td></td>
<td>PCB-83</td>
<td>ND</td>
<td>0.455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>0.424</td>
<td></td>
<td></td>
<td>PCB-84/92</td>
<td>ND</td>
<td>0.617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>ND</td>
<td>0.271</td>
<td></td>
<td></td>
<td>PCB-85/116</td>
<td>ND</td>
<td>0.543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>0.294</td>
<td></td>
<td></td>
<td>PCB-86</td>
<td>ND</td>
<td>0.732</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>0.475</td>
<td></td>
<td></td>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>0.660</td>
<td></td>
<td></td>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.663</td>
<td></td>
<td></td>
<td>PCB-135</td>
<td>ND</td>
<td>0.601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>0.547</td>
<td></td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td>0.420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.699</td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td>0.365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.656</td>
<td></td>
<td></td>
<td>PCB-138/163/164</td>
<td>ND</td>
<td>0.379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>0.576</td>
<td></td>
<td></td>
<td>PCB-139/149</td>
<td>ND</td>
<td>0.550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.508</td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>0.616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>0.582</td>
<td></td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td>0.372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>0.529</td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>0.560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.576</td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>0.438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.573</td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>ND</td>
<td>0.372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.439</td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td>0.615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.280</td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>0.586</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>0.409</td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.414</td>
<td></td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td>0.586</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.538</td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>0.410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>0.444</td>
<td></td>
<td></td>
<td>PCB-153</td>
<td>ND</td>
<td>0.431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.407</td>
<td></td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>0.538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.493</td>
<td></td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>0.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.315</td>
<td></td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td>0.252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.402</td>
<td></td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td>0.267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.381</td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.421</td>
<td></td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>0.269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.375</td>
<td></td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>0.288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.442</td>
<td></td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td>0.271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.424</td>
<td></td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>0.297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.312</td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>0.275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.338</td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td>0.205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.318</td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td>0.209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.412</td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td>0.224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.467</td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>0.275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.477</td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>ND</td>
<td>0.236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.360</td>
<td></td>
<td></td>
<td>PCB-175</td>
<td>ND</td>
<td>0.247</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Method Blank

Matrix: Solid
Sample Size: 10.0 g
QC Batch: B6B0040
Date Extracted: 09-Feb-2016 10:07
Lab Sample: B6B0040-BLK1
Date Analyzed: 16-Feb-16 17:04
Column: ZB-1
Analyst: MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Concentration (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.178</td>
<td></td>
<td></td>
<td>Total triCB</td>
<td>ND</td>
<td>0.517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>0.240</td>
<td></td>
<td></td>
<td>Total tetraCB</td>
<td>ND</td>
<td>0.424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.241</td>
<td></td>
<td></td>
<td>Total pentaCB</td>
<td>ND</td>
<td>0.745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.186</td>
<td></td>
<td></td>
<td>Total hexaCB</td>
<td>ND</td>
<td>0.616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.209</td>
<td></td>
<td></td>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.225</td>
<td></td>
<td></td>
<td>Total octaCB</td>
<td>0.273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.228</td>
<td></td>
<td></td>
<td>Total nonaCB</td>
<td>ND</td>
<td>0.227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.211</td>
<td></td>
<td></td>
<td>DecaCB</td>
<td>ND</td>
<td>0.174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.193</td>
<td></td>
<td></td>
<td>Total PCB</td>
<td>0.273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.273</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>0.456</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>0.501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>0.509</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.227</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>0.875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>ND</td>
<td>2.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **EMPC** - Estimated maximum possible concentration
- **DL** - Sample specific estimated detection limit
- **LCL-UCL** - Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 13C-PCB-1</td>
<td>81.6</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-157</td>
<td>91.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>81.3</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-159</td>
<td>90.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>75.7</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-167</td>
<td>92.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>83.6</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-169</td>
<td>99.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>78.6</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-170</td>
<td>96.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>81.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-180</td>
<td>94.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>74.8</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-188</td>
<td>82.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>82.1</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-189</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>93.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-194</td>
<td>89.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>85.8</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-202</td>
<td>78.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>86.4</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-206</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>72.2</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-208</td>
<td>84.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>87.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-209</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>90.8</td>
<td>10 - 145</td>
<td></td>
<td>CRS 13C-PCB-79</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>85.4</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>87.0</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>85.6</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>92.4</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>88.9</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>80.8</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>93.8</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>88.3</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>91.8</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>96.0</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>93.1</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>89.9</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>86.6</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>82.2</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>85.6</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>94.6</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit
EMPC - Estimated maximum possible concentration
LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight. The sample size is reported in wet weight.
Analyte

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/g)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Limits</th>
<th>Labeled Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>390</td>
<td>500</td>
<td>78.1</td>
<td>60 - 135</td>
<td>13C-PCB-1</td>
</tr>
<tr>
<td>PCB-3</td>
<td>393</td>
<td>500</td>
<td>78.6</td>
<td>60 - 135</td>
<td>13C-PCB-3</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>812</td>
<td>1000</td>
<td>81.2</td>
<td>60 - 135</td>
<td>13C-PCB-4</td>
</tr>
<tr>
<td>PCB-15</td>
<td>411</td>
<td>500</td>
<td>82.2</td>
<td>60 - 135</td>
<td>13C-PCB-9</td>
</tr>
<tr>
<td>PCB-19</td>
<td>456</td>
<td>500</td>
<td>91.2</td>
<td>60 - 135</td>
<td>13C-PCB-11</td>
</tr>
<tr>
<td>PCB-37</td>
<td>451</td>
<td>500</td>
<td>90.1</td>
<td>60 - 135</td>
<td>13C-PCB-19</td>
</tr>
<tr>
<td>PCB-54</td>
<td>477</td>
<td>500</td>
<td>95.5</td>
<td>60 - 135</td>
<td>13C-PCB-28</td>
</tr>
<tr>
<td>PCB-77</td>
<td>440</td>
<td>500</td>
<td>88.0</td>
<td>60 - 135</td>
<td>13C-PCB-32</td>
</tr>
<tr>
<td>PCB-81</td>
<td>435</td>
<td>500</td>
<td>87.0</td>
<td>60 - 135</td>
<td>13C-PCB-37</td>
</tr>
<tr>
<td>PCB-104</td>
<td>445</td>
<td>500</td>
<td>88.9</td>
<td>60 - 135</td>
<td>13C-PCB-47</td>
</tr>
<tr>
<td>PCB-105</td>
<td>387</td>
<td>500</td>
<td>77.4</td>
<td>60 - 135</td>
<td>13C-PCB-52</td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>874</td>
<td>1000</td>
<td>87.4</td>
<td>60 - 135</td>
<td>13C-PCB-54</td>
</tr>
<tr>
<td>PCB-114</td>
<td>408</td>
<td>500</td>
<td>81.7</td>
<td>60 - 135</td>
<td>13C-PCB-70</td>
</tr>
<tr>
<td>PCB-123</td>
<td>444</td>
<td>500</td>
<td>88.8</td>
<td>60 - 135</td>
<td>13C-PCB-77</td>
</tr>
<tr>
<td>PCB-126</td>
<td>404</td>
<td>500</td>
<td>80.8</td>
<td>60 - 135</td>
<td>13C-PCB-80</td>
</tr>
<tr>
<td>PCB-155</td>
<td>457</td>
<td>500</td>
<td>91.4</td>
<td>60 - 135</td>
<td>13C-PCB-81</td>
</tr>
<tr>
<td>PCB-156</td>
<td>452</td>
<td>500</td>
<td>90.3</td>
<td>60 - 135</td>
<td>13C-PCB-95</td>
</tr>
<tr>
<td>PCB-157</td>
<td>470</td>
<td>500</td>
<td>93.9</td>
<td>60 - 135</td>
<td>13C-PCB-97</td>
</tr>
<tr>
<td>PCB-167</td>
<td>459</td>
<td>500</td>
<td>91.7</td>
<td>60 - 135</td>
<td>13C-PCB-101</td>
</tr>
<tr>
<td>PCB-169</td>
<td>476</td>
<td>500</td>
<td>95.2</td>
<td>60 - 135</td>
<td>13C-PCB-104</td>
</tr>
<tr>
<td>PCB-188</td>
<td>459</td>
<td>500</td>
<td>91.8</td>
<td>60 - 135</td>
<td>13C-PCB-105</td>
</tr>
<tr>
<td>PCB-189</td>
<td>462</td>
<td>500</td>
<td>92.5</td>
<td>60 - 135</td>
<td>13C-PCB-114</td>
</tr>
<tr>
<td>PCB-202</td>
<td>482</td>
<td>500</td>
<td>96.4</td>
<td>60 - 135</td>
<td>13C-PCB-118</td>
</tr>
<tr>
<td>PCB-205</td>
<td>432</td>
<td>500</td>
<td>86.4</td>
<td>60 - 135</td>
<td>13C-PCB-123</td>
</tr>
<tr>
<td>PCB-206</td>
<td>490</td>
<td>500</td>
<td>98.0</td>
<td>60 - 135</td>
<td>13C-PCB-126</td>
</tr>
<tr>
<td>PCB-208</td>
<td>496</td>
<td>500</td>
<td>99.2</td>
<td>60 - 135</td>
<td>13C-PCB-127</td>
</tr>
<tr>
<td>PCB-209</td>
<td>450</td>
<td>500</td>
<td>90.0</td>
<td>60 - 135</td>
<td>13C-PCB-138</td>
</tr>
<tr>
<td>Analyte</td>
<td>Amt Found (pg/g)</td>
<td>Spike Amt</td>
<td>%R</td>
<td>Labeled Standard</td>
<td>%R</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-----------</td>
<td>----</td>
<td>-----------------</td>
<td>----</td>
</tr>
<tr>
<td>IS 13C-PCB-202</td>
<td>83.3</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 13C-PCB-206</td>
<td>100</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 13C-PCB-208</td>
<td>89.9</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 13C-PCB-209</td>
<td>106</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS 13C-PCB-79</td>
<td>107</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS 13C-PCB-178</td>
<td>106</td>
<td>40 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCL-UCL - Lower control limit - upper control limit
Sample ID: Soil #1

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 9:55

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.5 g
- **% Solids:** 69.4

Laboratory Data
- **Lab Sample:** 1600092-01
- **QC Batch:** B6B0040
- **Date Analyzed:** 16-Feb-16 18:10
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>1.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>2.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>2.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>2.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>2.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>2.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>7.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>2.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>4.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>1.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>0.918</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>2.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>0.361</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>3.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>0.428</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>0.962</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>6.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>6.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>0.642</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>5.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>1.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>6.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>3.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>12.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #1

Client Data
- Name: Walla Walla Basin Watershed Council
- Project: Stiller Pond
- Date Collected: 03-Feb-2016 9:55

Sample Data
- Matrix: Soil
- Sample Size: 14.5 g
- % Solids: 69.4

Laboratory Data
- Lab Sample: 1600092-01
- Date Received: 04-Feb-2016 9:53
- QC Batch: B6B0040
- Date Extracted: 09-Feb-2016 10:07

Work Order 1600092

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>70.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>16.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>39.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>30.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>74.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>6.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>2.59</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>75.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>0.772</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>0.940</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>1.13</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.388</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>0.785</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>5.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-125</td>
<td>0.800</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>26.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>4.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>3.48</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>4.52</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>6.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>5.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>68.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>0.824</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>0.416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>2.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>0.557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>0.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>0.389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>0.971</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>0.245</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>4.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>0.549</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>7.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>0.279</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>26.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>6.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>5.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>0.597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>27.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>1.08</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>2.47</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>8.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- LCL-UCL - Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #1

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 9:55

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.5 g
- **% Solids:** 69.4

Laboratory Data
- **Lab Sample:** 1600092-01
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 16-Feb-16 18:10
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180 56.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181 ND 0.367</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187 44.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183 12.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184 ND 0.408</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185 3.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186 ND 0.282</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188 ND 0.270</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189 1.45 J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190 6.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191 0.832 J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192 ND 0.285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193 3.73 B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194 15.9 B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195 7.30 J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203 29.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197 0.568 J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198 1.24 J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199 35.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200 3.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201 2.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202 8.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204 ND 0.439</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205 0.799 J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206 27.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207 3.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208 10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209 35.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total PCB Concentrations
- **Total PCB 1540**
- **Total octaCB 105**
- **Total nonaCB 41.1**
- **DecaCB 35.0**

Notes:
- **EMPC - Estimated maximum possible concentration**
- **DL - Sample specific estimated detection limit**
- **The results are reported in dry weight. The sample size is reported in wet weight.**

Work Order 1600092

Page 14 of 57
Client Data
Name: Walla Walla Basin Watershed Council
Project: Stiller Pond
Date Collected: 03-Feb-2016 9:55

Sample Data
Matrix: Soil
Sample Size: 14.5 g
% Solids: 69.4

Laboratory Data
Lab Sample: 1600092-01
QC Batch: B6B0040
Date Extracted: 09-Feb-2016 10:07

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>59.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>69.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>82.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>89.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>94.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>86.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>98.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>88.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>91.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>81.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>91.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>93.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>93.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>94.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>90.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>96.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>92.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>84.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>94.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>88.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>96.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>99.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>95.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>90.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>91.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>88.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>91.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>93.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>89.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>91.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>93.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>88.5</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Labeled Standard
- 13C-PCB-170: 92.6 10 - 145
- 13C-PCB-180: 93.9 10 - 145
- 13C-PCB-188: 83.6 10 - 145
- 13C-PCB-189: 99.5 10 - 145
- 13C-PCB-194: 107 10 - 145
- 13C-PCB-202: 75.9 10 - 145
- 13C-PCB-206: 110 10 - 145
- 13C-PCB-208: 102 10 - 145
- 13C-PCB-209: 125 10 - 145
- 13C-PCB-79: 102 10 - 145
- 13C-PCB-178: 100 10 - 145
- 13C-PCB-170: 92.6 10 - 145
- 13C-PCB-180: 93.9 10 - 145
- 13C-PCB-188: 83.6 10 - 145
- 13C-PCB-189: 99.5 10 - 145
- 13C-PCB-194: 107 10 - 145
- 13C-PCB-202: 75.9 10 - 145
- 13C-PCB-206: 110 10 - 145
- 13C-PCB-208: 102 10 - 145
- 13C-PCB-209: 125 10 - 145
- 13C-PCB-79: 102 10 - 145
- 13C-PCB-178: 100 10 - 145

Notes:
- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- LCL-UCL - Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:00

Sample Data
- **Matrix:** Soil
- **Sample Size:** 13.4 g
- **% Solids:** 75.6

Laboratory Data
- **Lab Sample:** 1600092-02
- **QC Batch:** B6B040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 16-Feb-16 19:15
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>2.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>2.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>2.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>3.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>2.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>2.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>2.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>ND</td>
<td>2.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>2.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>2.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>2.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>0.793</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>0.431</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>2.43</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>2.31</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-32</td>
<td>ND</td>
<td>0.229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-33</td>
<td>ND</td>
<td>0.248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>1.97</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>0.485</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>3.52</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>1.21</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>7.91</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-42/59</td>
<td>8.15</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-43/49</td>
<td>2.93</td>
<td>J</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

Qualifiers
- **ND** - Not detected
- **J** - Below detection limit

The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #2

<table>
<thead>
<tr>
<th>Client Data</th>
<th>Sample Data</th>
<th>Laboratory Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Walla Walla Basin Watershed Council</td>
<td>Matrix: Soil</td>
<td>Lab Sample: 1600092-02</td>
</tr>
<tr>
<td>Project: Stiller Pond</td>
<td>Sample Size: 13.4 g</td>
<td>QC Batch: B6B0040</td>
</tr>
<tr>
<td>Date Collected: 03-Feb-2016 10:00</td>
<td>% Solids: 75.6</td>
<td>Date Received: 04-Feb-2016 9:53</td>
</tr>
</tbody>
</table>

Sample Data

Analyte Concentration

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.829</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>59.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>12.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>34.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>26.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>58.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>5.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>1.72</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-110</td>
<td>68.3</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>0.659</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.616</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-114</td>
<td>0.732</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-119</td>
<td>1.03</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.481</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.522</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-122</td>
<td>0.710</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-123</td>
<td>2.16</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-124</td>
<td>4.45</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-126</td>
<td>0.637</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>24.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>4.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>9.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>18.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>2.80</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>3.64</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-135</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Data

<table>
<thead>
<tr>
<th>Laboratory Data</th>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Sample: 1600092-02</td>
<td>PCB-136</td>
<td>4.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC Batch: B6B0040</td>
<td>PCB-137</td>
<td>6.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Extracted: 09-Feb-2016 10:07</td>
<td>PCB-138/163/164</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Collected: 03-Feb-2016 10:00</td>
<td>PCB-139/149</td>
<td>57.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Analyzed: 16-Feb-16 19:15 Column: ZB-1 Analyst: MAS</td>
<td>PCB-140</td>
<td>ND</td>
<td>0.446</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-141</td>
<td>15.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-143</td>
<td>2.38</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>PCB-144</td>
<td>0.375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-145</td>
<td>15.8</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>PCB-146/165</td>
<td>1.96</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>PCB-147</td>
<td>0.501</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-148</td>
<td>0.363</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-149</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-150</td>
<td>0.350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-151</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-152</td>
<td>0.870</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>PCB-153</td>
<td>0.342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-154</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-155</td>
<td>4.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-156</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-157</td>
<td>4.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-158/160</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-159</td>
<td>0.379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-160</td>
<td>0.406</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-161</td>
<td>6.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-162</td>
<td>0.380</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-163</td>
<td>0.399</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-164</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-165</td>
<td>5.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-166</td>
<td>4.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-167</td>
<td>0.361</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-168</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-169</td>
<td>0.942</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>PCB-170</td>
<td>21.0</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>PCB-171</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-172</td>
<td>7.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB-173</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- The results are reported in dry weight. The sample size is reported in wet weight.

Work Order 1600092
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>48.6</td>
<td></td>
<td></td>
<td></td>
<td>Total octaCB</td>
<td>90.2</td>
<td></td>
<td>91.0</td>
<td>B</td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.296</td>
<td></td>
<td></td>
<td>Total nonaCB</td>
<td>37.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>36.3</td>
<td></td>
<td></td>
<td></td>
<td>DecaCB</td>
<td>32.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td>Total CB</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>5.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>0.986</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>3.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>14.2</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>6.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>0.491</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>1.19</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>30.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>2.37</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>8.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.842</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>9.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>32.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>2.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>ND</td>
<td>3.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>7.14</td>
<td>11.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>55.8</td>
<td>56.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>461</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>201</td>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight. The sample size is reported in wet weight.
<table>
<thead>
<tr>
<th>Sample ID: Soil #2</th>
<th>EPA Method 1668C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Data</td>
<td></td>
</tr>
<tr>
<td>Name:</td>
<td>Walla Walla Basin Watershed Council</td>
</tr>
<tr>
<td>Project:</td>
<td>Stiller Pond</td>
</tr>
<tr>
<td>Date Collected:</td>
<td>03-Feb-2016 10:00</td>
</tr>
</tbody>
</table>

Sample Data	
Matrix:	Soil
Sample Size:	13.4 g
% Solids:	75.6

<table>
<thead>
<tr>
<th>Laboratory Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Sample:</td>
</tr>
<tr>
<td>QC Batch:</td>
</tr>
<tr>
<td>Date Analyzed:</td>
</tr>
<tr>
<td>Column:</td>
</tr>
<tr>
<td>Analyst:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL Qualifiers</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>50.5</td>
<td>5 - 145</td>
<td>13C-PCB-170</td>
<td>84.2</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>64.8</td>
<td>5 - 145</td>
<td>13C-PCB-180</td>
<td>87.7</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>70.2</td>
<td>5 - 145</td>
<td>13C-PCB-188</td>
<td>79.5</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>76.0</td>
<td>5 - 145</td>
<td>13C-PCB-189</td>
<td>88.5</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>75.4</td>
<td>5 - 145</td>
<td>13C-PCB-194</td>
<td>85.3</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>78.7</td>
<td>5 - 145</td>
<td>13C-PCB-202</td>
<td>68.0</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>71.9</td>
<td>5 - 145</td>
<td>13C-PCB-206</td>
<td>94.6</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>82.3</td>
<td>5 - 145</td>
<td>13C-PCB-208</td>
<td>87.0</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>84.7</td>
<td>5 - 145</td>
<td>13C-PCB-209</td>
<td>97.9</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>83.6</td>
<td>5 - 145</td>
<td>13C-PCB-79</td>
<td>96.2</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>84.4</td>
<td>5 - 145</td>
<td>13C-PCB-178</td>
<td>97.7</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>73.5</td>
<td>5 - 145</td>
<td>13C-PCB-170</td>
<td>84.2</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>73.5</td>
<td>5 - 145</td>
<td>13C-PCB-180</td>
<td>87.7</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>86.9</td>
<td>5 - 145</td>
<td>13C-PCB-188</td>
<td>79.5</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>88.7</td>
<td>10 - 145</td>
<td>13C-PCB-189</td>
<td>88.5</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>81.8</td>
<td>10 - 145</td>
<td>13C-PCB-194</td>
<td>85.3</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>86.3</td>
<td>10 - 145</td>
<td>13C-PCB-202</td>
<td>68.0</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>84.4</td>
<td>10 - 145</td>
<td>13C-PCB-206</td>
<td>94.6</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>89.2</td>
<td>10 - 145</td>
<td>13C-PCB-208</td>
<td>87.0</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>86.5</td>
<td>10 - 145</td>
<td>13C-PCB-209</td>
<td>97.9</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>81.2</td>
<td>10 - 145</td>
<td>13C-PCB-79</td>
<td>96.2</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>90.6</td>
<td>10 - 145</td>
<td>13C-PCB-178</td>
<td>97.7</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>86.0</td>
<td>10 - 145</td>
<td>13C-PCB-170</td>
<td>84.2</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>89.5</td>
<td>10 - 145</td>
<td>13C-PCB-180</td>
<td>87.7</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>92.9</td>
<td>10 - 145</td>
<td>13C-PCB-188</td>
<td>79.5</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>96.8</td>
<td>10 - 145</td>
<td>13C-PCB-189</td>
<td>88.5</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>92.2</td>
<td>10 - 145</td>
<td>13C-PCB-194</td>
<td>85.3</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>86.2</td>
<td>10 - 145</td>
<td>13C-PCB-202</td>
<td>68.0</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>83.2</td>
<td>10 - 145</td>
<td>13C-PCB-206</td>
<td>94.6</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>82.8</td>
<td>10 - 145</td>
<td>13C-PCB-208</td>
<td>87.0</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>84.3</td>
<td>10 - 145</td>
<td>13C-PCB-209</td>
<td>97.9</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>89.6</td>
<td>10 - 145</td>
<td>13C-PCB-79</td>
<td>96.2</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>85.8</td>
<td>10 - 145</td>
<td>13C-PCB-178</td>
<td>97.7</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>87.3</td>
<td>10 - 145</td>
<td>13C-PCB-170</td>
<td>84.2</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>87.6</td>
<td>10 - 145</td>
<td>13C-PCB-180</td>
<td>87.7</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>90.4</td>
<td>10 - 145</td>
<td>13C-PCB-188</td>
<td>79.5</td>
<td>10 - 145</td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #3

EPA Method 1668C

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:12

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.5 g
- **% Solids:** 69.8

Laboratory Data
- **Lab Sample:** 1600092-03
- **QC Batch:** B6B0040
- **Date Analyzed:** 16-Feb-16 20:20
- **Column:** ZB-1
- **Analyst:** MAS
- **Date Received:** 04-Feb-2016 9:53
- **Date Extracted:** 09-Feb-2016 10:07

Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td></td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>3.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>5.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td></td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>5.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td></td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td></td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>5.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td></td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td></td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>1.71</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-17</td>
<td>0.849</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-18</td>
<td>2.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td></td>
<td>0.371</td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>5.03</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-22</td>
<td>3.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td></td>
<td>0.337</td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td></td>
<td>0.244</td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>1.36</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>1.96</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td></td>
<td>0.337</td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td></td>
<td>0.235</td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-32</td>
<td>ND</td>
<td></td>
<td>0.314</td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td></td>
<td>0.872</td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td></td>
<td>0.310</td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td></td>
<td>0.427</td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td></td>
<td>0.405</td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>1.20</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>4.22</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-44</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>ND</td>
<td></td>
<td>0.332</td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td></td>
<td>0.413</td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>1.72</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td></td>
<td>0.341</td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>0.298</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>30.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-53</td>
<td>ND</td>
<td></td>
<td>0.514</td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td></td>
<td>0.259</td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>1.09</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>0.269</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td></td>
<td>0.963</td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>70.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td></td>
<td>0.293</td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>1.93</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td></td>
<td>0.302</td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>40.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td></td>
<td>0.632</td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>1.53</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td></td>
<td>0.278</td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td></td>
<td>0.223</td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>4.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td></td>
<td>0.204</td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>0.344</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-82</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td></td>
<td>0.454</td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>70.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>64.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td></td>
<td>0.731</td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>76.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #3

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:12

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.5 g
- **% Solids:** 69.8

Laboratory Data
- **Lab Sample:** 1600092-03
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 16-Feb-16 20:20
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>PCB</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>82.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>49.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>0.784</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>1.61</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>73.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>30.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>7.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>316</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>2.63</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>3.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>6.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>1.96</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>4.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>6.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>3.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>88.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>15.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>40.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>86.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>46.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte Conc. (pg/g): The results are reported in dry weight. The sample size is reported in wet weight. **DL:** Sample specific estimated detection limit **EMPC:** Estimated maximum possible concentration **Qualifiers:** LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Concentration (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>53.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>0.275</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.269</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>4.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>21.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>3.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>11.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>60.5</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>24.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>93.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>2.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>9.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>9.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>23.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>23.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.376</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>62.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>7.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>50.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>9.66</td>
<td>11.7</td>
<td></td>
<td></td>
<td>Total octaCB</td>
<td>334</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>34.4</td>
<td>35.7</td>
<td></td>
<td></td>
<td>Total nonaCB</td>
<td>90.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>60.9</td>
<td>61.8</td>
<td></td>
<td></td>
<td>DecaCB</td>
<td>50.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>290</td>
<td>292</td>
<td></td>
<td></td>
<td>Total PCB</td>
<td>5170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>1530</td>
<td></td>
<td></td>
<td></td>
<td>LCL-UCL - Lower control limit - upper control limit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>1910</td>
<td>1920</td>
<td></td>
<td></td>
<td>The results are reported in dry weight. The sample size is reported in wet weight.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>864</td>
<td></td>
<td></td>
<td></td>
<td>Work Order 1600092</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Work Order 1600092
Sample ID: Soil #3

Client Data
Name: Walla Walla Basin Watershed Council
Project: Stiller Pond
Date Collected: 03-Feb-2016 10:12

Sample Data
Matrix: Soil
Sample Size: 14.5 g
% Solids: 69.8

Laboratory Data
Lab Sample: 1600092-03
QC Batch: B6B0040
Date Analyzed: 16-Feb-2016 20:20
Column: ZB-1
Analyst: MAS

Work Order 1600092

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td></td>
<td>5 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>50.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>65.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>82.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>89.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>89.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>85.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>88.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>93.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>81.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>83.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>89.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>91.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>86.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>89.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>88.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>95.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>91.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>78.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>95.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>88.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>92.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>98.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>99.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>95.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>88.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>90.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>88.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>86.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>94.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>92.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>93.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>92.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>95.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-170</td>
<td>93.8</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>93.4</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>83.7</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>96.8</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>92.8</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>73.9</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>101</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>95.0</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>111</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-79</td>
<td>105</td>
<td>10 - -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>102</td>
<td>10 - -145</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #4

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:17

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.3 g
- **% Solids:** 70.4

Laboratory Data
- **Lab Sample:** 1600092-04
- **QC Batch:** B6B0040
- **Date Analyzed:** 16-Feb-16 21:25
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration

<table>
<thead>
<tr>
<th>PCB</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>1.78</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.83</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-3</td>
<td>4.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>5.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>4.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>4.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>4.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>4.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>4.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>13.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>3.42</td>
<td>2.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>2.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>1.15</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>6.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-32</td>
<td>ND</td>
<td>0.397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>9.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.789</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>13.1</td>
<td>2.65</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>2.65</td>
<td>26.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #4

Client Data
- Name: Walla Walla Basin Watershed Council
- Project: Stiller Pond
- Date Collected: 03-Feb-2016 10:17

Sample Data
- Matrix: Soil
- Sample Size: 14.3 g
- % Solids: 70.4

Laboratory Data
- Lab Sample: 1600092-04
- Date Received: 04-Feb-2016 9:53
- QC Batch: B6B0040
- Date Extracted: 09-Feb-2016 10:07
- Date Analyzed: 16-Feb-16 21:25
- Column: ZB-1
- Analyst: MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.878</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>59.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.687</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>0.916</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.524</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-105</td>
<td>42.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>20.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>4.82</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>1.98</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>2.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>4.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>1.60</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>4.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>2.34</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>59.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>29.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>62.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>8.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>9.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>28.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>16.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>327</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>1.65</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>40.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>7.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>0.568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>53.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>7.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>0.759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>0.550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>49.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>0.531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>2.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>0.518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>32.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>8.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>26.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>1.31</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>0.480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>0.306</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>62.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>12.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>1.39</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>64.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>3.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>6.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>42.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>29.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
The results are reported in dry weight. The sample size is reported in wet weight.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Still Pond
- **Date Collected:** 03-Feb-2016 10:17

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.3 g
- **% Solids:** 70.4

Laboratory Data
- **Lab Sample:** 1600092-04
- **QC Batch:** B6B0040
- **Date Analyzed:** 16-Feb-2016 21:25
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>132</td>
<td></td>
<td>0.346</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td></td>
<td>0.295</td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>36.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td></td>
<td>0.295</td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>7.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td></td>
<td>0.271</td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td></td>
<td>0.260</td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>12.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>2.25</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td></td>
<td>0.269</td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>7.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>38.3</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-195</td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>57.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>2.00</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-198</td>
<td>2.37</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-199</td>
<td>64.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>6.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>6.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td></td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>1.94</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-206</td>
<td>41.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>5.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>13.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>34.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>7.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>33.4</td>
<td></td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>181</td>
<td></td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>1280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>565</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- The results are reported in dry weight. The sample size is reported in wet weight.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:17

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.3 g
- **% Solids:** 70.4

Laboratory Data
- **Lab Sample:** 1600092-04
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 16-Feb-16 21:25
- **Column:** ZB-1
- **Analyst:** MAS

Labeled Standard

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>% R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>63.3</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>74.3</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>73.4</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>82.6</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>78.4</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>80.2</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>89.1</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>84.2</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>95.1</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>87.2</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>88.3</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>77.4</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>86.2</td>
<td>5 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>87.6</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>86.0</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>89.1</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>88.5</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>94.1</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>91.6</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>85.8</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>92.0</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>88.0</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>95.1</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>99.8</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>98.4</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>93.6</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>88.4</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>86.7</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>80.2</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>87.2</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>92.0</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>92.0</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>87.7</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>88.8</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>91.4</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-170</td>
<td>84.8</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>89.4</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>77.3</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>90.3</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>72.8</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>101</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>90.2</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>105</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-79</td>
<td>101</td>
<td>10 -145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>99.6</td>
<td>10 -145</td>
<td></td>
</tr>
</tbody>
</table>

Qualifier Key:
- **IS:** Internal Standard
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:27

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.1 g
- **% Solids:** 72.1

Laboratory Data
- **Lab Sample:** 1600092-05
- **QC Batch:** B6B0040
- **Date Analyzed:** 16-Feb-16 22:30
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>0.681</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-2</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>2.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>6.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>4.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>4.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>4.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>4.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>0.611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>3.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>2.41</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>1.20</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>11.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>6.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-32</td>
<td>ND</td>
<td>0.304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.747</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>9.13</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>2.26</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit

Work Order 1600092

The results are reported in dry weight. The sample size is reported in wet weight.
Sample Data

- **Sample ID:** Soil #5
- **EPA Method:** 1668C

Client Data

- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:27

Sample Data

- **Matrix:** Soil
- **Sample Size:** 14.1 g
- **% Solids:** 72.1

Laboratory Data

- **Lab Sample:** 1600092-05
- **Date Received:** 04-Feb-2016 9:53
- **Date Analyzed:** 09-Feb-2016 10:07
- **Date Extracted:** 16-Feb-16 22:30
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Results

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>47.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>0.524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>0.947</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.507</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>72.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>187</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>20.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>4.72</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>1.35</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>2.42</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>4.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>1.46</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>2.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>5.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>2.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>61.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>29.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>57.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>7.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>8.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>28.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **EMPC - Estimated maximum possible concentration**
- **DL - Sample specific estimated detection limit**
- **LCL-UCL - Lower control limit - upper control limit**
- The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #5

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:27

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.1 g
- **% Solids:** 72.1

Laboratory Data
- **Lab Sample:** 1600092-05
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 16-Feb-2016 22:30
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Conc. (pg/g) DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>128</td>
<td></td>
<td>0.256</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>32.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>7.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>3.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>8.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>34.4</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-195</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>55.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>2.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>61.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>6.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>6.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>4.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>5.06</td>
<td>5.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>21.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>36.3</td>
<td>38.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>1040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>1260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>544</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- LCL-UCL - Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #5
Client Data
Name: Walla Walla Basin Watershed Council
Project: Stiller Pond
Date Collected: 03-Feb-2016 10:27

Sample Data
Matrix: Soil
Sample Size: 14.1 g
% Solids: 72.1

Laboratory Data
Lab Sample: 1600092-05
QC Batch: B6B0040
Date Collected: 04-Feb-2016 9:53
Date Received: 09-Feb-2016 10:07
Date Extracted: 09-Feb-2016 10:07
Date Analyzed: 16-Feb-2016 22:30
Column: ZB-1
Analyst: MAS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>72.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>80.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>71.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>88.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>79.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>80.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>73.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>84.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>86.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>88.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>90.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>78.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>89.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>93.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>88.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>90.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>87.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>94.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>89.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>84.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>91.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>88.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>95.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>100</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>98.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>94.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>87.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>87.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>87.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>87.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>91.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>89.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>90.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>90.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>92.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-170</td>
<td>90.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>90.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>78.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>91.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>69.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>97.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>88.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-79</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>99.8</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #6

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:32

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.1 g
- **% Solids:** 71.1

Laboratory Data
- **Lab Sample:** 1600092-06
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 16-Feb-16 23:35
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>2.22</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>5.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>7.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4</td>
<td>ND</td>
<td>6.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>5.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7</td>
<td>ND</td>
<td>5.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12</td>
<td>5.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>4.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>43.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16</td>
<td>4.52</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>2.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>7.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20</td>
<td>19.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24</td>
<td>ND</td>
<td>0.797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>3.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>8.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>60.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>40.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-32</td>
<td>ND</td>
<td>0.339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-33</td>
<td>ND</td>
<td>0.346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>3.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>54.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>5.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>92.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41</td>
<td>ND</td>
<td>17.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42</td>
<td>ND</td>
<td>149</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.
Sample Data
- **Sample ID:** Soil #6
- **Soil:** E PA Method 1668C
- **Client Data:**
 - **Name:** Walla Walla Basin Watershed Council
 - **Project:** Stiller Pond
 - **Date Collected:** 03-Feb-2016 10:32
- **Sample Data:**
 - **Matrix:** Soil
 - **Sample Size:** 14.1 g
 - **% Solids:** 71.1

Laboratory Data
- **Lab Sample:** 1600092-06
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 16-Feb-16 23:35
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>1.33</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>579</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>2.08</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-103</td>
<td>5.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>368</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>20.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>5.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>298</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>47.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>318</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>38.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>48.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>142</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>92.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>74.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>880</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>6.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>41.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>0.372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>34.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>0.602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>0.834</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-151</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>0.956</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-153</td>
<td>1310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>14.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>0.411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>37.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-160</td>
<td>7.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>72.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>1.47</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-169</td>
<td>0.798</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-170</td>
<td>256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>76.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>49.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>6.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>31.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>70.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #6

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:32

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.1 g
- **% Solids:** 71.1

Laboratory Data
- **Lab Sample:** 1600092-06
- **QC Batch:** B6B0040
- **Date Analyzed:** 16-Feb-16 23:35
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concen. (pg/g) DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analog</th>
<th>Concentration (pg/g)</th>
<th>Detection Limit (pg/g)</th>
<th>EMPC (pg/g)</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>525</td>
<td>ND</td>
<td>0.398</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>416</td>
<td>156</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.419</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>0.620</td>
<td>9.72</td>
<td>0.309</td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>58.6</td>
<td>ND</td>
<td>0.309</td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>32.5</td>
<td>139</td>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>PCB-195</td>
<td>65.0</td>
<td>232</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>6.37</td>
<td>10.6</td>
<td>0.402</td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>245</td>
<td>7.25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>55.7</td>
<td>128</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>25.8</td>
<td>15.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>55.7</td>
<td>15.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>41.8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>96.5</td>
<td>ND</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>128</td>
<td>96.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>41.8</td>
<td>96.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>218</td>
<td>96.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>219</td>
<td>96.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>1310</td>
<td>96.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>5990</td>
<td>5990</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>6150</td>
<td>6150</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>2310</td>
<td>2310</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #6

EPA Method 1668C

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:32

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.1 g
- **% Solids:** 71.1

Laboratory Data
- **Lab Sample:** 1600092-06
- **QC Batch:** B6B0040
- **Date Analyzed:** 16-Feb-16 23:35
- **Column:** ZB-1
- **Analyst:** MAS71.1
- **Date Received:** 04-Feb-2016 9:53
- **Date Extracted:** 09-Feb-2016 10:07

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>75.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>80.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>77.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>94.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>83.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>81.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>92.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>87.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>98.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>88.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>90.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>82.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>91.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>94.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>90.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>96.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>93.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>98.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>94.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>88.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>99.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>93.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>98.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>99.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>95.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>90.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>87.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>88.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>96.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>96.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>93.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>95.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>97.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-170</td>
<td>89.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>94.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>81.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>96.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>98.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>72.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>109</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>100</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>118</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-79</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- **EMPC** - Estimated maximum possible concentration
- **DL** - Sample specific estimated detection limit
- **LCL-UCL** - Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #7

Client Data
- Name: Walla Walla Basin Watershed Council
- Project: Stiller Pond
- Date Collected: 03-Feb-2016 10:42

Sample Data
- Matrix: Soil
- Sample Size: 13.7 g
- % Solids: 73.1

Laboratory Data
- Lab Sample: 1600092-07
- Date Received: 04-Feb-2016 9:53
- QC Batch: B6B0040
- Date Extracted: 09-Feb-2016 10:07
- Date Analyzed: 17-Feb-16 00:40
- Column: ZB-1
- Analyst: MAS

Analyte Conc. (pg/g) DL EMPC Qualifiers

PCB-1	1.65	J
PCB-2	6.32	
PCB-3	3.84	
PCB-4/10	ND	4.31
PCB-5/8	ND	1.44
PCB-6	ND	3.47
PCB-7/9	ND	3.43
PCB-11	9.24	
PCB-12/13	ND	3.28
PCB-14	ND	2.82
PCB-15	5.71	
PCB-16/32	ND	0.325
PCB-17	ND	0.356
PCB-18	ND	0.956
PCB-19	ND	0.412
PCB-20/21/33	ND	1.23
PCB-22	ND	0.910
PCB-23	ND	0.333
PCB-24/27	ND	0.262
PCB-25	ND	0.337
PCB-26	ND	0.621
PCB-28	4.42	
PCB-29	ND	0.333
PCB-30	ND	0.261
PCB-31	3.14	
PCB-34	ND	0.310
PCB-35	ND	0.353
PCB-36	ND	0.341
PCB-37	3.52	
PCB-38	ND	0.357
PCB-39	ND	0.352
PCB-40	0.519	J
PCB-41/64/71/72	4.01	J
PCB-42/59	1.13	J
PCB-43/49	9.25	

PCB-44	3.42	
PCB-45	ND	0.349
PCB-46	ND	0.383
PCB-47	3.28	
PCB-48/75	0.617	J
PCB-50	ND	0.371
PCB-51	ND	0.313
PCB-52/69	6.42	
PCB-53	ND	0.320
PCB-54	ND	0.282
PCB-55	0.348	J
PCB-56/60	5.17	
PCB-57	ND	0.240
PCB-58	ND	0.364
PCB-61/70	18.8	
PCB-62	ND	0.251
PCB-63	0.535	J
PCB-65	ND	0.259
PCB-66/76	10.1	
PCB-67	ND	0.246
PCB-68	0.515	J
PCB-73	ND	0.258
PCB-74	2.87	
PCB-77	3.35	
PCB-78	ND	0.229
PCB-79	1.21	J
PCB-80	ND	0.201
PCB-81	0.206	J
PCB-82	ND	2.92
PCB-83	ND	0.475
PCB-84/92	14.7	
PCB-85/116	16.3	
PCB-86	ND	0.764
PCB-87/117/125	17.0	
PCB-88/91	4.58	J

Notes:
- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- LCL-UCL - Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.

Work Order 1600092

Page 36 of 57
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.695</td>
<td></td>
<td></td>
<td>PCB-136</td>
<td>4.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>59.4</td>
<td></td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.718</td>
<td></td>
<td></td>
<td>PCB-138/163/164</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.674</td>
<td></td>
<td></td>
<td>PCB-139/149</td>
<td>61.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>0.765</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.496</td>
<td></td>
<td></td>
<td>PCB-141</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>2.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>40.9</td>
<td></td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>0.369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.562</td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.559</td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>2.16</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.428</td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>0.494</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>0.358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
<td>PCB-151</td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>7.77</td>
<td></td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>0.345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>1.46</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-153</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>70.5</td>
<td></td>
<td></td>
<td>J</td>
<td>PCB-154</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>0.619</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>0.337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.516</td>
<td></td>
<td>J</td>
<td>PCB-156</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>0.850</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-157</td>
<td>3.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>1.67</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-158/160</td>
<td>9.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>0.518</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>0.383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.433</td>
<td></td>
<td>J</td>
<td>PCB-160</td>
<td>ND</td>
<td>0.410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>0.968</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>0.410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>1.78</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-167</td>
<td>6.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>3.97</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>0.392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>0.919</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>0.407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.421</td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>21.6</td>
<td></td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>6.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>3.22</td>
<td></td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>4.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>0.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.630</td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>23.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
<td>PCB-175</td>
<td>0.949</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>2.98</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-176</td>
<td>2.07</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>3.04</td>
<td></td>
<td>J</td>
<td></td>
<td>PCB-177</td>
<td>16.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>9.86</td>
<td></td>
<td></td>
<td></td>
<td>PCB-178</td>
<td>6.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCB-179</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample ID: Soil #7

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:42

Sample Data
- **Matrix:** Soil
- **Sample Size:** 13.7 g
- **% Solids:** 73.1

Laboratory Data
- **Lab Sample:** 1600092-07
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 17-Feb-16 00:40
- **Column:** ZB-1
- **Analyst:** MAS

Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>52.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>40.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>3.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>1.11</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>5.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>0.728</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>3.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>15.0</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>5.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>0.975</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>0.928</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>2.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>2.47</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>0.762</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>2.14</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>5.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>15.0</td>
<td></td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>11.1</td>
<td></td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>71.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>349</td>
<td></td>
<td>352</td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>456</td>
<td></td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **EMPC** - Estimated maximum possible concentration
- **DL** - Sample specific estimated detection limit
- **LCL-UCL** - Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>50.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>68.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>79.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>84.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>83.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>93.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>86.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>94.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>91.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>92.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>78.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>89.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>91.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>90.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>94.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>95.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>98.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>95.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>92.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>97.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>93.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>97.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>93.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>92.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>90.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>93.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>96.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>97.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>95.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>94.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>98.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-170</td>
<td>94.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>93.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>86.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>97.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>98.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>72.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>96.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>115</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-79</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #8

Client Data
- **Name**: Walla Walla Basin Watershed Council
- **Project**: Stiller Pond
- **Date Collected**: 03-Feb-2016 10:47

Sample Data
- **Matrix**: Soil
- **Sample Size**: 13.7 g
- **% Solids**: 74.7

Laboratory Data
- **Lab Sample**: 1600092-08
- **Date Received**: 04-Feb-2016 9:53
- **QC Batch**: B6B0040
- **Date Extracted**: 09-Feb-2016 10:07
- **Date Analyzed**: 18-Feb-16 03:57
- **Column**: ZB-1
- **Analyst**: MAS

Analyte Conc. (pg/g) DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>0.252</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>0.474</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-3</td>
<td>0.440</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>0.990</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>0.798</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>0.820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>0.810</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>1.14</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>0.751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>0.647</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>0.721</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>0.406</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.427</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>0.461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>0.675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.145</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.160</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>0.925</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.145</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.135</td>
<td>0.446</td>
<td>J</td>
</tr>
<tr>
<td>PCB-31</td>
<td>ND</td>
<td>0.135</td>
<td>0.446</td>
<td>J</td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.135</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.147</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.143</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>0.502</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.149</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.147</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>0.268</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>1.34</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>0.229</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>1.47</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

Analyte Conc. (pg/g) DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-44</td>
<td>0.692</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-45</td>
<td>ND</td>
<td>0.222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>0.244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>0.783</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>0.259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>ND</td>
<td>0.199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>1.37</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-53</td>
<td>ND</td>
<td>0.204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>0.197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>0.899</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>0.154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>0.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>3.06</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>0.169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>0.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>0.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>1.74</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>0.158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>ND</td>
<td>0.143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>0.164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>0.524</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-77</td>
<td>0.508</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>0.243</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>0.596</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>0.331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>3.03</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>2.96</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>0.533</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>2.88</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>0.922</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #8

EPA Method 1668C

<table>
<thead>
<tr>
<th>Client Data</th>
<th>Sample Data</th>
<th>Laboratory Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Walla Walla Basin Watershed Council</td>
<td>Matrix: Soil</td>
<td>Lab Sample: 1600092-08</td>
</tr>
<tr>
<td>Project: Stiller Pond</td>
<td>Sample Size: 13.7 g</td>
<td>QC Batch: B6B0040</td>
</tr>
<tr>
<td>Date Collected: 03-Feb-2016 10:47</td>
<td>% Solids: 74.7</td>
<td>Date Received: 04-Feb-2016 9:53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.490</td>
<td>0.490</td>
<td></td>
<td>PCB-136</td>
<td>1.02</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>1.36</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.501</td>
<td>0.501</td>
<td></td>
<td>PCB-138/163/164</td>
<td>24.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.471</td>
<td>0.471</td>
<td></td>
<td>PCB-139/149</td>
<td>12.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>3.04</td>
<td></td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>0.321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.350</td>
<td>0.350</td>
<td></td>
<td>PCB-141</td>
<td>2.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>1.76</td>
<td></td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>0.391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>8.43</td>
<td></td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>0.228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.396</td>
<td>0.396</td>
<td></td>
<td>PCB-146/165</td>
<td>3.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.394</td>
<td>0.394</td>
<td></td>
<td>PCB-147</td>
<td>0.663</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.302</td>
<td>0.302</td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>0.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>3.30</td>
<td></td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>0.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>8.49</td>
<td></td>
<td></td>
<td></td>
<td>PCB-151</td>
<td>4.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>1.40</td>
<td></td>
<td></td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>0.214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.275</td>
<td>0.275</td>
<td></td>
<td>PCB-153</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>0.298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.147</td>
<td>0.147</td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>0.208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.364</td>
<td>0.364</td>
<td></td>
<td>PCB-156</td>
<td>2.06</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.449</td>
<td>0.449</td>
<td></td>
<td>PCB-157</td>
<td>0.633</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>0.463</td>
<td></td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>1.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.277</td>
<td>0.277</td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>0.198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.302</td>
<td>0.302</td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>0.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.535</td>
<td>0.535</td>
<td></td>
<td>PCB-167</td>
<td>1.09</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.294</td>
<td>0.294</td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>0.196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>0.570</td>
<td></td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>0.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.544</td>
<td>0.544</td>
<td></td>
<td>PCB-170</td>
<td>4.64</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.247</td>
<td>0.247</td>
<td></td>
<td>PCB-171</td>
<td>1.25</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>4.16</td>
<td></td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>1.15</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>0.698</td>
<td></td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>0.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>2.01</td>
<td></td>
<td></td>
<td></td>
<td>PCB-174</td>
<td>4.98</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.315</td>
<td>0.315</td>
<td></td>
<td>PCB-175</td>
<td>0.224</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>3.74</td>
<td></td>
<td></td>
<td></td>
<td>PCB-176</td>
<td>0.468</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>0.571</td>
<td></td>
<td></td>
<td></td>
<td>PCB-177</td>
<td>3.51</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>0.615</td>
<td></td>
<td></td>
<td></td>
<td>PCB-178</td>
<td>1.30</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td>PCB-179</td>
<td>2.04</td>
<td>J</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- **EMPC** - Estimated maximum possible concentration
- **DL** - Sample specific estimated detection limit
- **LCL-UCL** - Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #8

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:47

Sample Data
- **Matrix:** Soil
- **Sample Size:** 13.7 g
- **% Solids:** 74.7

Laboratory Data
- **Lab Sample:** 1600092-08
- **Date Collected:** 03-Feb-2016 10:47
- **QC Batch:** B6B0040
- **Date Analyzed:** 16-Feb-16 03:57
- **Column:** ZB-1
- **Analyst:** MAS

Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>9.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td></td>
<td>0.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>8.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>2.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td></td>
<td>0.167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td></td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td></td>
<td>0.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td></td>
<td>0.147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>0.263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>1.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td></td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td></td>
<td>0.156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>0.749</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>4.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td></td>
<td>0.208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>0.372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>5.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>0.629</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>0.495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>1.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td></td>
<td>0.226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td></td>
<td>0.204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>3.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>0.545</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>3.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>0.915</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>1.83</td>
<td></td>
<td>2.28</td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>12.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>61.7</td>
<td>62.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>91.6</td>
<td>92.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>42.8</td>
<td>43.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte Conc. (pg/g) DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octaCB</td>
<td>17.7</td>
<td></td>
<td>17.9</td>
<td>B</td>
</tr>
<tr>
<td>Total nonaCB</td>
<td>5.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DecaCB</td>
<td>3.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PCB</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- The results are reported in dry weight. The sample size is reported in wet weight.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:47

Sample Data
- **Matrix:** Soil
- **Sample Size:** 13.7 g
- **% Solids:** 74.7

Laboratory Data
- **Lab Sample:** 1600092-08
- **Date Received:** 04-Feb-2016 9:53
- **Date Analyzed:** 18-Feb-16 03:57
- **Column:** ZB-1
- **Analyst:** MAS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>68.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>82.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>76.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>89.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>79.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>88.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>92.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>92.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>101</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>88.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>92.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>73.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>89.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>95.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>91.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>91.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>95.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>97.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>94.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>92.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>98.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>92.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>99.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>99.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>93.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>93.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>90.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>95.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>98.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>95.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>95.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>96.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

EMPC: Estimated maximum possible concentration
DL: Sample specific estimated detection limit
LCL-UCL: Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #9

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:55

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.2 g
- **% Solids:** 70.7

Laboratory Data
- **Lab Sample:** 1600092-09
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 18-Feb-16 05:02
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Conc. (pg/g) DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>1.32</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.69</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>2.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>2.77</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>0.860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>0.849</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>7.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>1.45</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>0.681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>9.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>1.07</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>0.532</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>1.52</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>2.70</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>1.81</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>0.893</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>7.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>4.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>7.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.784</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>6.78</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>1.74</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>20.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte Conc. (pg/g) DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-44</td>
<td>5.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>0.225</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>0.269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>5.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>0.681</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>0.257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>ND</td>
<td>0.220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>11.9</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-53</td>
<td>0.217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>0.195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>0.353</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>11.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>0.156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>0.352</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>41.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>0.170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>0.586</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>0.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>0.409</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>0.181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>6.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>7.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>2.38</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>0.587</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>41.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>40.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>0.525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>48.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>12.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
- The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #9

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:55

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.2 g
- **% Solids:** 70.7

Laboratory Data
- **Lab Sample:** 1600092-09
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 18-Feb-16 05:02
- **Column:** ZB-1
- **Analyst:** MAS

Analytes and Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>41.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>27.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>0.318</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>0.751</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>64.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>18.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>4.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>3.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>2.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>5.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>2.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>55.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>9.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>50.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>7.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>8.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>27.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

Analysts
- Work Order 1600092

The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #9

Method: EPA Method 1668C

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 10:55

Sample Data
- **Matrix:** Soil
- **Sample Size:** 14.2 g
- **% Solids:** 70.7

Laboratory Data
- **Lab Sample:** 1600092-09
- **Date Received:** 04-Feb-2016 9:53
- **QC Batch:** B6B0040
- **Date Extracted:** 09-Feb-2016 10:07
- **Date Analyzed:** 18-Feb-16 05:02
- **Column:** ZB-1
- **Analyst:** MAS

Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>132</td>
<td></td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td></td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>32.8</td>
<td></td>
<td>0.184</td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td></td>
<td>0.184</td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>7.58</td>
<td></td>
<td>0.162</td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td></td>
<td>0.169</td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td></td>
<td>0.162</td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>2.29</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td></td>
<td>0.167</td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>8.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>37.4</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>61.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>1.62</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>2.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>69.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>6.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>6.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td></td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>2.09</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>51.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>6.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>58.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>5.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>29.0</td>
<td></td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>960</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>543</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conc. (pg/g): Concentration in picograms per gram. **DL:** Sample specific estimated detection limit. **EMPC:** Estimated maximum possible concentration. **Qualifiers:** D (Determined), L (Lower), U (Upper), J (Joint), B (Background). **LCL-UCL:** Lower control limit - upper control limit. The results are reported in dry weight. The sample size is reported in wet weight.
Transparent-Sample ID: Soil #9

<table>
<thead>
<tr>
<th>Client Data</th>
<th>Sample Data</th>
<th>Laboratory Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Walla Walla Basin Watershed Council</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project: Stiller Pond</td>
<td>Matrix: Soil</td>
<td>Lab Sample: 1600092-09 Date Received: 04-Feb-2016 9:53</td>
</tr>
<tr>
<td>Date Collected: 03-Feb-2016 10:55</td>
<td>Sample Size: 14.2 g</td>
<td>QC Batch: B6B0040 Date Extracted: 09-Feb-2016 10:07</td>
</tr>
<tr>
<td></td>
<td>% Solids: 70.7</td>
<td>Date Analyzed: 18-Feb-2016 05:02 Column: ZB-1 Analyst: MAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL Qualifiers</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>59.1</td>
<td>5 - 145</td>
<td>13C-PCB-170</td>
<td>91.1</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>73.5</td>
<td>5 - 145</td>
<td>13C-PCB-180</td>
<td>87.6</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>69.2</td>
<td>5 - 145</td>
<td>13C-PCB-188</td>
<td>73.6</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>81.8</td>
<td>5 - 145</td>
<td>13C-PCB-189</td>
<td>92.8</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>74.1</td>
<td>5 - 145</td>
<td>13C-PCB-194</td>
<td>76.2</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>79.9</td>
<td>5 - 145</td>
<td>13C-PCB-202</td>
<td>80.4</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>71.4</td>
<td>5 - 145</td>
<td>13C-PCB-206</td>
<td>87.1</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>84.2</td>
<td>5 - 145</td>
<td>13C-PCB-208</td>
<td>67.0</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>84.8</td>
<td>5 - 145</td>
<td>13C-PCB-209</td>
<td>89.9</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>79.1</td>
<td>5 - 145</td>
<td>CRS</td>
<td>13C-PCB-79</td>
<td>92.2</td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>80.1</td>
<td>5 - 145</td>
<td>13C-PCB-178</td>
<td>91.4</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>62.8</td>
<td>5 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>80.9</td>
<td>5 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>82.4</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>81.3</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>80.1</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>80.9</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>84.2</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>80.8</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>81.6</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>84.9</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>79.1</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>84.9</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>90.3</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>91.4</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>86.7</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>79.5</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>79.6</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>75.2</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>83.1</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>86.1</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>85.3</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>84.5</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>85.4</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>93.1</td>
<td>10 - 145</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Labeled Standard
- %R: Estimated maximum possible concentration
- LCL-UCL: Lower control limit - upper control limit
- Qualifiers
- The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #10

Client Data
- Name: Walla Walla Basin Watershed Council
- Project: Stiller Pond
- Date Collected: 03-Feb-2016 11:00

Sample Data
- Matrix: Soil
- Sample Size: 13.7 g
- % Solids: 73.1

Laboratory Data
- Lab Sample: 1600092-10
- QC Batch: B6B0040
- Date Analyzed: 18-Feb-16 06:07
- Column: ZB-1
- Analyst: MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>0.875</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>1.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>0.985</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>1.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>0.807</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>0.797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>3.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>0.847</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>0.614</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>5.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>0.855</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.183</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>0.938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.223</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>1.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.683</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>0.512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>3.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>0.376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>4.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>0.958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte
- PCB-44
- PCB-45
- PCB-46
- PCB-47
- PCB-48/75
- PCB-50
- PCB-51
- PCB-52/69
- PCB-53
- PCB-54
- PCB-55
- PCB-56/60
- PCB-57
- PCB-89/91

Conc. (pg/g)
- 3.43
- 0.321
- 0.352
- 3.50
- 0.449
- 0.351
- 0.288
- 6.02
- 0.294
- 0.267
- 0.324
- 6.04
- 0.200
- 0.184
- 22.1
- 0.238
- 0.591
- 0.245
- 10.0
- 0.230
- 0.506
- 0.237
- 3.53
- 3.70
- 0.195
- 1.51
- 0.169
- 0.256
- 5.86
- 0.531
- 24.4
- 29.0
- 0.854
- 28.5
- 8.59

LCL-UCL
- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>19.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>70.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>0.642</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>31.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>88.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>2.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>0.860</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>1.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>3.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>7.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>1.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>38.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>6.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>29.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>5.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>4.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: Soil #10

Client Data
- Name: Walla Walla Basin Watershed Council
- Project: Stiller Pond
- Date Collected: 03-Feb-2016 11:00

Sample Data
- Matrix: Soil
- Sample Size: 13.7 g
- % Solids: 73.1

Laboratory Data
- Lab Sample: 1600092-10
- QC Batch: B6B0040
- Date Analyzed: 18-Feb-16 06:07
- Column: ZB-1
- Analyst: MAS

Analyte Conc. (pg/g) Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>7.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>9.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>227</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>0.815</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>26.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>4.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>0.262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>34.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>4.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>0.350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>0.254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>0.245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>1.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>0.239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>6.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>0.796</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>0.375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>0.290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>20.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>9.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>8.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>0.859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>41.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>1.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>3.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
The results are reported in dry weight. The sample size is reported in wet weight.
Sample ID: Soil #10

EPA Method 1668C

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 11:00

Sample Data
- **Matrix:** Soil
- **Sample Size:** 13.7 g
- **% Solids:** 73.1

Laboratory Data
- **Lab Sample:** 1600092-10
- **QC Batch:** B6B0040
- **Date Analyzed:** 18-Feb-16 06:07
- **Column:** ZB-1
- **Analyst:** MAS
- **Date Received:** 04-Feb-2016 9:53
- **Date Extracted:** 09-Feb-2016 10:07

Analyte Concentration Table

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/g)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>87.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>69.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>4.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-187</td>
<td>1.94</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>9.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>1.40</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>5.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>24.4</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>9.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>38.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>0.922</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>1.68</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>46.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>4.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>3.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>11.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>0.241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>1.44</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>33.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>4.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>35.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>4.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>14.1</td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>78.8</td>
<td>80.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>604</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>838</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>364</td>
<td>365</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Work Order 1600092
Sample ID: Soil #10

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-Feb-2016 11:00

Sample Data
- **Matrix:** Soil
- **Sample Size:** 13.7 g
- **% Solids:** 73.1

Laboratory Data
- **Lab Sample:** 1600092-10
- **QC Batch:** B6B0040
- **Date Analyzed:** 18-Feb-2016 06:07
- **Column:** ZB-1
- **Analyst:** MAS
- **Date Received:** 04-Feb-2016 9:53
- **Date Extracted:** 09-Feb-2016 10:07

Labeled Standard Qualifiers

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>63.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>84.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>72.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>89.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>75.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>87.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>87.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>92.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>99.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>89.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>92.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>68.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>88.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>89.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>86.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>88.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>89.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>92.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>92.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>91.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>97.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>91.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>96.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>99.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>98.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>90.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>88.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>87.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>93.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>97.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>93.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>94.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>94.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Qualifiers:
- **LCL-UCL:** Lower control limit - upper control limit
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit

Notes:
The results are reported in dry weight. The sample size is reported in wet weight.
DATA QUALIFIERS & ABBREVIATIONS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>This compound was also detected in the method blank.</td>
</tr>
<tr>
<td>D</td>
<td>Dilution</td>
</tr>
<tr>
<td>E</td>
<td>The associated compound concentration exceeded the calibration range of the instrument.</td>
</tr>
<tr>
<td>H</td>
<td>Recovery and/or RPD was outside laboratory acceptance limits.</td>
</tr>
<tr>
<td>I</td>
<td>Chemical Interference</td>
</tr>
<tr>
<td>J</td>
<td>The amount detected is below the Lower Calibration Limit of the instrument.</td>
</tr>
<tr>
<td>*</td>
<td>See Cover Letter</td>
</tr>
<tr>
<td>Conc.</td>
<td>Concentration</td>
</tr>
<tr>
<td>DL</td>
<td>Sample-specific estimated detection limit</td>
</tr>
<tr>
<td>MDL</td>
<td>The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.</td>
</tr>
<tr>
<td>EMPC</td>
<td>Estimated Maximum Possible Concentration</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable</td>
</tr>
<tr>
<td>RL</td>
<td>Reporting Limit – concentrations that correspond to low calibration point</td>
</tr>
<tr>
<td>ND</td>
<td>Not Detected</td>
</tr>
<tr>
<td>TEQ</td>
<td>Toxic Equivalency</td>
</tr>
</tbody>
</table>

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.
CERTIFICATIONS

<table>
<thead>
<tr>
<th>Accrediting Authority</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Department of Health – ELAP</td>
<td>2892</td>
</tr>
<tr>
<td>DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005</td>
<td>3091.01</td>
</tr>
<tr>
<td>Florida Department of Health</td>
<td>E87777</td>
</tr>
<tr>
<td>Hawaii Department of Health</td>
<td>N/A</td>
</tr>
<tr>
<td>Louisiana Department of Environmental Quality</td>
<td>01977</td>
</tr>
<tr>
<td>Maine Department of Health</td>
<td>2014022</td>
</tr>
<tr>
<td>Nevada Division of Environmental Protection</td>
<td>CA004132016-1</td>
</tr>
<tr>
<td>New Jersey Department of Environmental Protection</td>
<td>CA003</td>
</tr>
<tr>
<td>New York Department of Health</td>
<td>11411</td>
</tr>
<tr>
<td>Oregon Laboratory Accreditation Program</td>
<td>4042-004</td>
</tr>
<tr>
<td>Pennsylvania Department of Environmental Protection</td>
<td>012</td>
</tr>
<tr>
<td>South Carolina Department of Health</td>
<td>87002001</td>
</tr>
<tr>
<td>Tennessee Department of Environmental Quality</td>
<td>TN02996</td>
</tr>
<tr>
<td>Texas Commission on Environmental Quality</td>
<td>T104704189-15-6</td>
</tr>
<tr>
<td>Virginia Department of General Services</td>
<td>7923</td>
</tr>
<tr>
<td>Washington Department of Ecology</td>
<td>C584</td>
</tr>
<tr>
<td>Wisconsin Department of Natural Resources</td>
<td>998036160</td>
</tr>
</tbody>
</table>

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.
MATRIX: Air

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Polychlorinated p-Dioxins & Polychlorinated Dibenzofurans</td>
<td>EPA 23</td>
</tr>
</tbody>
</table>

MATRIX: Biological Tissue

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Polychlorinated p-Dioxins & Polychlorinated Dibenzofurans</td>
<td>EPA 23</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>

MATRIX: Drinking Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
</tbody>
</table>

MATRIX: Non-Potable Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Dioxin by GC/HRMS</td>
<td>EPA 613</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
<tr>
<td>MATRIX: Solids</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Description of Test</td>
<td>Method</td>
</tr>
<tr>
<td>Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>
Chain of Custody

Project ID:

Struck Pond

P.O.:

Sampler:

Tara Patern

See "Sample Log-in Checklist" for additional sample information

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Location/Sample Description</th>
<th>Add Analyses) Requested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil #1</td>
<td>2-3-16</td>
<td>9:55</td>
<td>Struck Pond</td>
<td></td>
</tr>
<tr>
<td>Soil #2</td>
<td>10:09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil #3</td>
<td>10:12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil #4</td>
<td>10:19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil #5</td>
<td>10:24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil #6</td>
<td>10:32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil #7</td>
<td>10:42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil #8</td>
<td>10:47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil #9</td>
<td>10:54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil #10</td>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Container(s):

- Quality
- Type
- Matrix
- 5th, TCDD
- PCBs
- PCDDs
- PCDFs
- PCDFs
- PCDDs
- PCDFs
- TOXIC
- COBALT
- COPPER
- 19 Cancers
- BPA
- PAH
- WHO-20

Container Types:

A = 1 Liter Amber, G = Glass Jar

P = PUF, T = MMS Train, O = Other

Bottle Preservative Type:

T = Thiosulfate

O = Other

Send Documentation and Results To:

Name: **Steven Patern**

Company: **Lyubluc**

Address: **810 S MAIN**

City: **MELTON-FELDER** State: **WI** Zip: **53152**

Phone: **541-955-2170** Fax: **541-955-2170**

Email: **steven.patern@barwco.org**

Matrix Types:

DW = Drinking Water, EF = Effluent, PP = Pulp/Paper,

SD = Sediment, SL = Sludge, SO = Soil, WW = Wastewater, B = Blood/Serum

AG = Aqueous, O = Other
SAMPLE LOG-IN CHECKLIST

Vista Project #: 1600092

<table>
<thead>
<tr>
<th>Samples Arrival:</th>
<th>Date/Time: 02/04/16 0953</th>
<th>Initials: U3BB</th>
<th>Location: W3-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf/Rack:</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logged In:</th>
<th>Date/Time: 02/04/16 1319</th>
<th>Initials: U3BB</th>
<th>Location: N3-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf/Rack:</td>
<td>E4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delivered By:</th>
<th>FedEx</th>
<th>UPS</th>
<th>On Trac</th>
<th>DHL</th>
<th>Hand Delivered</th>
<th>Other</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Preservation:</th>
<th>Ice</th>
<th>Blue Ice</th>
<th>Dry Ice</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Temp °C:</th>
<th>0.7 (uncorrected)</th>
<th>Time: 0959</th>
<th>Thermometer ID: IR-2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Adequate Sample Volume Received?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Holding Time Acceptable?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Shipping Container(s) Intact?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Shipping Custody Seals Intact?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Shipping Documentation Present?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Airbill</th>
<th>Trk #: 1269E377015B3568</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Container Intact?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Custody Seals Intact?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Chain of Custody / Sample Documentation Present?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>COC Anomaly/Sample Acceptance Form completed?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

If Chlorinated or Drinking Water Samples, Acceptable Preservation?

<table>
<thead>
<tr>
<th>Na₂S₂O₃ Preservation Documented?</th>
<th>COC</th>
<th>Sample Container</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Shipping Container</th>
<th>Vista</th>
<th>Client</th>
<th>Retain</th>
<th>Return</th>
<th>Dispose</th>
</tr>
</thead>
</table>

Comments:
May 5, 2016

Mr. Steve Patten
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

RE: 16-07632 - Walla Walla Basin Aquifer Recharge

Dear Mr. Steve Patten,

Your project: Walla Walla Basin Aquifer Recharge, was received on Friday April 08, 2016.

All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone us at 800 755-9295.

Respectfully

[Signature]

Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Enclosures: Data Report
Case Narrative

Reference: **16-07632**

Lab Sample ID 17648

<table>
<thead>
<tr>
<th>Sample Information</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiller Pond - Mill Creek</td>
<td>Sample said to smell of seawater, or pond water</td>
</tr>
</tbody>
</table>

- **Notes**: Sample said to smell of seawater, or pond water
- **Created by**: ANP

Analytical Method

<table>
<thead>
<tr>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.8</td>
<td>High LFB results for Cu and Zn; samples rerun on 4/19/16 for Cu Zn LFB results for 4/19/16 acceptable. Confirmation results for 4/19/16 suggest laboratory contamination for some Cu and Zn samples at low concentrations.</td>
</tr>
</tbody>
</table>

- **Created by**: BJ

Analytical Method

<table>
<thead>
<tr>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM2120 B</td>
<td>Sample was filtered prior to analysis.</td>
</tr>
</tbody>
</table>

- **Created by**: RHF

Lab Sample ID 17649

<table>
<thead>
<tr>
<th>Sample Information</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiller Pond - GW_136</td>
<td></td>
</tr>
</tbody>
</table>

- **Analytical Method**: 200.8
- **Notes**: High LFB results for Cu and Zn; samples rerun on 4/19/16 for Cu Zn LFB results for 4/19/16 acceptable. Confirmation results for 4/19/16 suggest laboratory contamination for some Cu and Zn samples at low concentrations.

- **Created by**: BJ

Analytical Method

<table>
<thead>
<tr>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM2120 B</td>
<td>Sample was filtered prior to analysis.</td>
</tr>
</tbody>
</table>

- **Created by**: RHF

Lab Sample ID 17650

<table>
<thead>
<tr>
<th>Sample Information</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiller Pond - GW_145</td>
<td></td>
</tr>
</tbody>
</table>

- **Analytical Method**: 200.8
- **Notes**: High LFB results for Cu and Zn; samples rerun on 4/19/16 for Cu Zn LFB results for 4/19/16 acceptable. Confirmation results for 4/19/16 suggest laboratory contamination for some Cu and Zn samples at low concentrations.

- **Created by**: BJ

Analytical Method

<table>
<thead>
<tr>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM2120 B</td>
<td>Sample was filtered prior to analysis.</td>
</tr>
</tbody>
</table>

- **Created by**: RHF
### Lab Sample ID	Sample Information
17651 | Stiller Pond - GW_146

<table>
<thead>
<tr>
<th>Analytical Method</th>
<th>Notes</th>
<th>Created by</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.8</td>
<td>High LFB results for Cu and Zn; samples rerun on 4/19/16 for Cu Zn LFB results for 4/19/16 acceptable. Confirmation results for 4/19/16</td>
<td>BJ</td>
</tr>
</tbody>
</table>

Sample was filtered prior to analysis.

### Lab Sample ID	Sample Information
17652 | Stiller Pond - GW_147

<table>
<thead>
<tr>
<th>Analytical Method</th>
<th>Notes</th>
<th>Created by</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.8</td>
<td>High LFB results for Cu and Zn; samples rerun on 4/19/16 for Cu Zn LFB results for 4/19/16 acceptable. Confirmation results for 4/19/16</td>
<td>BJ</td>
</tr>
</tbody>
</table>

Sample was filtered prior to analysis.
Data Report

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Reference Number: 16-07632
Project: Walla Walla Basin Aquifer Recharge

Report Date: 5/5/16
Date Received: 4/15/16
Approved by: anp, bj, clc, ch, fm, jaa, mvp
Authorized by: Lawrence J Henderson, PhD

Sample Description: Stiller Pond - Mill Creek

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Computer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>5.43</td>
<td>0.10</td>
<td></td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>4/15/16</td>
<td>TURB_160415</td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>4/13/16</td>
<td>MMH_160413</td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>3.3</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>4/16/16</td>
<td>MMH_160415A</td>
</tr>
<tr>
<td>16894-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>4/16/16</td>
<td>MMH_160415A</td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>2.7</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>4/16/16</td>
<td>MMH_160415A</td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIONITY</td>
<td>-1.76</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>Bi</td>
<td>a</td>
<td>4/15/16</td>
<td>mvp COR_160419</td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND N1</td>
<td>5</td>
<td></td>
<td></td>
<td>1.0</td>
<td>SM2120 B</td>
<td>a</td>
<td>4/15/16</td>
<td>RHF COLOR_160415</td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>3.6 N1</td>
<td>1</td>
<td></td>
<td></td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>4/15/16</td>
<td>RHF ODOR_160415</td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>40</td>
<td>1</td>
<td></td>
<td>mg CaCO3</td>
<td>1.0</td>
<td>SM2320 B</td>
<td>a</td>
<td>4/12/16</td>
<td>MVP alk_160411a</td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>mgCaCO3</td>
<td>1.0</td>
<td>SM2320 B</td>
<td>a</td>
<td>4/12/16</td>
<td>MVP alk_160411a</td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>91</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>4/11/16</td>
<td>MMH TDS_160411</td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.44 H5</td>
<td></td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>4/15/16</td>
<td>RHF pH_160415</td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>0.64</td>
<td>0.01</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-N03 F</td>
<td>a</td>
<td>4/15/16</td>
<td>ANP NO3NO2_160415</td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.17</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>4/15/16</td>
<td>ANP OPHOS_160415</td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>0.034</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5540 C</td>
<td>a</td>
<td>5/4/16</td>
<td>MJ AMTESS40_16050</td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>8.4</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ 200.7_16041B</td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.20</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ 200.7_16041B</td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.0043</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.73010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ 200.7_16041B</td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00019 J</td>
<td>0.0005</td>
<td>8.1E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP 200.8_160413 WW</td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.011</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP 200.8_160413 WW</td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.1E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP 200.8_160413 WW</td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.0003 J</td>
<td>0.0005</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP 200.8_160413 WW</td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.00099 J</td>
<td>0.002</td>
<td>8.6E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP 200.8_160413 WW</td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP 200.8_160413 WW</td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.0022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.83010 A</td>
<td>a</td>
<td>4/13/16</td>
<td>MVP 200.8_160413 WW</td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

If you have any questions concerning this report contact us at the above phone number.
Data Report

<table>
<thead>
<tr>
<th>Substance</th>
<th>Units</th>
<th>Result</th>
<th>Method</th>
<th>Date</th>
<th>Dilution Factor</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILVER</td>
<td>mg/L</td>
<td>ND</td>
<td>200.8/3010A</td>
<td>4/13/16</td>
<td>a</td>
<td>MVP_160413WW</td>
</tr>
<tr>
<td>ZINC</td>
<td>mg/L</td>
<td>0.0025</td>
<td>200.8/3010A</td>
<td>4/13/16</td>
<td>a</td>
<td>MVP_160413WW</td>
</tr>
<tr>
<td>E. Coli</td>
<td>MPN/100mL</td>
<td>84.2</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>4/16/16</td>
<td>b</td>
<td>CKK qt_160415</td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>MPN/100mL</td>
<td>>2419.6</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>4/16/16</td>
<td>b</td>
<td>CKK qt_160415</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>mg/L</td>
<td>0.183</td>
<td>SM4500-P</td>
<td>4/12/16</td>
<td>a</td>
<td>ANP TPHOS_160412</td>
</tr>
</tbody>
</table>

Notes:

- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

Form: dResult.rpt
<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>387</td>
<td>1</td>
<td>NTU</td>
<td>10.0</td>
<td>180.1</td>
<td></td>
<td></td>
<td>4/8/16</td>
<td>RHF</td>
<td>TURB_160408</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td></td>
<td>4/13/16</td>
<td>MMH</td>
<td>245.1_1_160413</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>2.8</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td></td>
<td>4/9/16</td>
<td>MMH</td>
<td>i160408A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.17</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td></td>
<td>4/9/16</td>
<td>MMH</td>
<td>i160408A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>3.1</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td></td>
<td>4/9/16</td>
<td>MMH</td>
<td>i160408A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.39</td>
<td></td>
<td></td>
<td>Bi</td>
<td>1.0</td>
<td></td>
<td></td>
<td>4/19/16</td>
<td>msp</td>
<td>cor_160419</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>8 N1</td>
<td>5</td>
<td>1</td>
<td>Color Units</td>
<td>1.0</td>
<td></td>
<td></td>
<td>4/8/16</td>
<td>RHF</td>
<td>COLOR_160408</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td>1.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td>4/8/16</td>
<td>RHF</td>
<td>ODOR_160408</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>108</td>
<td>1</td>
<td></td>
<td>mg</td>
<td></td>
<td></td>
<td></td>
<td>4/12/16</td>
<td>MVP</td>
<td>alk_160411a</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>mg/kgCaCO3/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>4/11/16</td>
<td>MMH</td>
<td>TDS_160411</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>146</td>
<td>20</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>4/8/16</td>
<td>RHF</td>
<td>pH_160408</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.78 H5</td>
<td></td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td></td>
<td></td>
<td>4/8/16</td>
<td>RHF</td>
<td>pH_160408</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>0.26</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>4/8/16</td>
<td>ANP</td>
<td>NO3NO2_160408</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.27</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>4/8/16</td>
<td>ANP</td>
<td>OPHOS_160408</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
<td></td>
<td>4/8/16</td>
<td>MJ</td>
<td>AMTE5540_16040f</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

Reference Number: 16-07632
Report Date: 5/5/16
Page 3 of 6
Data Report

Sample Description: Stiller Pond - GW_145

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed Analyst Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>9.16</td>
<td>0.1</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>RHF TURB_160415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>MMH 245.1_160413</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>34.9</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH I160415A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.23</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH I160415A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>32.4</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH I160415A</td>
<td></td>
</tr>
</tbody>
</table>

NA

- **CORROSIVITY**
 - Value: -0.41

E-11712

- **COLOR**
 - Value: ND N1

E-11734

- **ODOR**
 - Value: ND

CAS ID#

- **BICARBONATE**
 - Value: 178

- **CARBONATE**
 - Value: ND

E-10173

- **TOTAL DISSOLVED SOLIDS (TDS)**
 - Value: 309

E-10139

- **HYDROGEN ION (pH)**
 - Value: 7.48

14797-55-8

- **NITRATE-N**
 - Value: 2.12

14265-44-2

- **ORTHOPHOSPHATE**
 - Value: 0.14

NA

- **SURFACANTS**
 - Value: ND

7440-70-2

- **CALCIUM**
 - Value: 42.0

7439-89-6

- **IRON**
 - Value: 0.41

7439-96-5

- **MANGANESE**
 - Value: 0.0097

7440-38-2

- **ARSENIC**
 - Value: 0.002

7440-39-3

- **BARIUM**
 - Value: 0.057

7440-43-9

- **CADMIUM**
 - Value: ND

7440-47-3

- **CHROMIUM**
 - Value: 0.00046 J

7440-50-8

- ** COPPER**
 - Value: 0.003

7439-92-1

- **LEAD**
 - Value: 0.0004 J

7782-49-2

- **SELENIUM**
 - Value: 0.0004 J

7440-22-4

- **SILVER**
 - Value: ND

7440-66-6

- **ZINC**
 - Value: 0.0019 J

E. Coli

- **Value:** <1 H3

TOTAL COLIFORM

- **Value:** 12.1 H3

7723-14-0

- **TOTAL PHOSPHORUS**
 - Value: 0.130

Notes:

- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

Form: cResult.rpt
Data Report

Sample Description: Still Pond - GW_146
Lab Number: 17651
Sample Comment:
Sample Date: 4/7/16
Lab:
Analyst: Steven Patten

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analysed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>191</td>
<td>1</td>
<td></td>
<td>NTU</td>
<td>10.0</td>
<td>180.1</td>
<td>RHF</td>
<td>4/15/16</td>
<td>TURB_160415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>MMH</td>
<td>4/13/16</td>
<td>M160413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16887-00-8</td>
<td>CHLORIDE</td>
<td>25.1</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MMH</td>
<td>4/16/16</td>
<td>I160415A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.27</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MMH</td>
<td>4/16/16</td>
<td>I160415A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>30.9</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MMH</td>
<td>4/16/16</td>
<td>I160415A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.45</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND N1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RHF</td>
<td>4/15/16</td>
<td>COLOR_160415</td>
<td>pH: 7.5</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1.0</td>
<td></td>
<td>RHF</td>
<td>4/15/16</td>
<td>ODOR_160415</td>
<td>Temperature: 40.0</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>176</td>
<td>1</td>
<td></td>
<td>mg</td>
<td>1.0</td>
<td>SM2320 B</td>
<td>MVP</td>
<td>4/12/16</td>
<td>a_160411a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>SM2320 B</td>
<td>MVP</td>
<td>4/13/16</td>
<td>a_160411a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>313</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MMH</td>
<td>4/13/16</td>
<td>TDS_160413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.52 H5</td>
<td></td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>RHF</td>
<td>4/15/16</td>
<td>HPH_160415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>7.17</td>
<td>0.01</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>ANP</td>
<td>4/15/16</td>
<td>NO3NO2_160415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.15</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>ANP</td>
<td>4/15/16</td>
<td>OPHOS_160415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5840 C</td>
<td>MJ</td>
<td>4/16/16</td>
<td>AMTESS_160415</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

Form: cResult.rpt
Data Report

Sample Description: Stiller Pond - GW_147
Sample Date: 4/7/16 8:10 am
Reference Number: 16-07632
Report Date: 5/5/16
Lab Number: 17652
Sample Comment:
Collected By: Steven Patten
Estimated Temperature: 41.6°C

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>2.59</td>
<td>0.1</td>
<td>0.15</td>
<td>NTU</td>
<td>1</td>
<td>180.1</td>
<td>a</td>
<td>4/8/16</td>
<td>RHF</td>
<td>TURB_160408</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1</td>
<td>245.1</td>
<td>a</td>
<td>4/13/16</td>
<td>MMH</td>
<td>245.1, 160413</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>24.8</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1</td>
<td>300.0</td>
<td>a</td>
<td>4/9/16</td>
<td>MMH</td>
<td>Cl_160408A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.16</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1</td>
<td>300.0</td>
<td>a</td>
<td>4/9/16</td>
<td>MMH</td>
<td>Cl_160408A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>21</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1</td>
<td>300.0</td>
<td>a</td>
<td>4/9/16</td>
<td>MMH</td>
<td>Cl_160408A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>4/22/16</td>
<td>mep</td>
<td>COR_160422</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>5</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1</td>
<td>SM1210 B</td>
<td>a</td>
<td>4/8/16</td>
<td>RHF</td>
<td>COLOR_160408</td>
<td>pH: 7.0</td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1</td>
<td>SM2150</td>
<td>a</td>
<td>4/8/16</td>
<td>RHF</td>
<td>ODR_160408</td>
<td>Temperature: 41.6</td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>122</td>
<td>1</td>
<td></td>
<td>mg CaCO3/L</td>
<td>1</td>
<td>SM2320 B</td>
<td>a</td>
<td>4/12/16</td>
<td>MVP</td>
<td>Alk_160411a</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>mg CaCO3/L</td>
<td>1</td>
<td>SM2320 B</td>
<td>a</td>
<td>4/12/16</td>
<td>MVP</td>
<td>Alk_160411a</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>251</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1</td>
<td>SM2540 C</td>
<td>a</td>
<td>4/13/16</td>
<td>MMH</td>
<td>TDS_160413</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.37</td>
<td>H5</td>
<td></td>
<td>pH Units</td>
<td>1</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>4/9/16</td>
<td>RHF</td>
<td>pH_160408</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>4.52</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1</td>
<td>SM4500-NO3 F</td>
<td>a</td>
<td>4/9/16</td>
<td>ANP</td>
<td>NO3_160408</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.18</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1</td>
<td>SM4500-P F</td>
<td>a</td>
<td>4/8/16</td>
<td>ANP</td>
<td>OPHO_160408</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1</td>
<td>SM5540 C</td>
<td>a</td>
<td>4/8/16</td>
<td>MJ</td>
<td>AMTE_160404</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>35.2</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1</td>
<td>200.73010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.7_160413B</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.39</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1</td>
<td>200.73010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.7_160413B</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.0076</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1</td>
<td>200.73010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.7_160413B</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.004</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1</td>
<td>200.83010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.038</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1</td>
<td>200.83010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1</td>
<td>200.83010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1</td>
<td>200.83010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.001 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1</td>
<td>200.83010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.00012 J</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1</td>
<td>200.83010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>0.0004 J</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1</td>
<td>200.83010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1</td>
<td>200.83010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0015 J</td>
<td>0.00025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1</td>
<td>200.83010A</td>
<td>a</td>
<td>4/13/16</td>
<td>BJ</td>
<td>200.8_160413WW</td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1</td>
<td>MPN/100mL</td>
<td>1</td>
<td>SM69223</td>
<td>B.2.b/Colisure</td>
<td>b</td>
<td>4/8/16</td>
<td>clc</td>
<td>qt_160408</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td><1</td>
<td>MPN/100mL</td>
<td>1</td>
<td>SM4500-P</td>
<td>F/SM4500-P b/R</td>
<td>a</td>
<td>4/8/16</td>
<td>clc</td>
<td>qt_160408</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>0.176</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1</td>
<td>SM4500-P</td>
<td>a</td>
<td>4/14/16</td>
<td>ANP</td>
<td>TPHOS_160414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

Form: cResult.rpt
DATA REPORT

Client Information
- **Client Name:** Walla Walla Basin Watershed Council
- **Address:** 810 South Main Street, Milton-Freewater, OR 97862

Lab Information
- **Lab Number:** 17652
- **Field ID:** Stiller Pond
- **Sample Description:** GW_147
- **Matrix:** Water
- **Sample Date:** 4/7/16
- **Extraction Date:** 4/13/16
- **Extraction Method:** 3535

Project Details
- **Reference Number:** 16-07632
- **Project:** Walla Walla Basin Aquifer Re\n
Report Details
- **Report Date:** 5/5/16
- **Date Analyzed:** 4/19/16
- **Analyst:** CO
- **Batch:** 8081B
- **Approval:** pdm.rjk

Authorized by:
- **Lawrence J Henderson, PhD**
 Director of Laboratories, Vice President

Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name:
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17652
Field ID: Stiller Pond
Sample Description: GW_147
Matrix: Water
Sample Date: 4/7/16
Extraction Date: 4/12/16
Extraction Method: 3510C

Reference Number: 16-07632
Project: Walla Walla Basin Aquifer Re

Report Date: 5/5/16
Date Analyzed: 4/18/16
Analytical Method: 8151A
Batch: 8151W_160412
Approved By: pdm.rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.6</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55338-06-7</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.6</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.4</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.32</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.02</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.01</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.49</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.01</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-85-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.02</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.08</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.08</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.03</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.06</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.04</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR 97862

Lab Number: 17652
Field ID: Stiller Pond
Sample Description: GW_147
Matrix: Water
Sample Date: 4/7/16
Extraction Date: 4/11/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-56-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c668.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P-XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N-BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N-PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O-CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O-XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P-CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P-ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC-BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.0</td>
<td>a</td>
<td>Screening Only</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT-BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17651
Field ID: Stiller Pond
Sample Description: GW_146
Matrix: Water
Sample Date: 4/7/16
Extraction Date: 4/13/16
Extraction Method: 3535

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'-DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'-DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'-DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-46-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENOZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17651
Field ID: Stiller Pond
Sample Description: GW_146
Matrix: Water
Sample Date: 4/7/16
Extraction Date: 4/11/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS-1,2-DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS-1,3-DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M.P.-XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N-BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N-PROPYLEN BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-48-9</td>
<td>O-CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O-XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P-CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P-ISOPROPYL TOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC-BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT-BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS-1,2-DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS-1,3-DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.

D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17650
Field ID: Stiller Pond
Sample Description: GW_145
Matrix: Water
Sample Date: 4/14/16
Extraction Date: 4/13/16
Extraction Method: 3535

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

- ND - indicates the compound was not detected above the PQL or MDL.
- MDL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Lab QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name:
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Information:
Lab Number: 17650
Field ID: Stiller Pond
Sample Description: GW_145
Matrix: Water
Sample Date: 4/14/16
Extraction Date: 4/12/16
Extraction Method: 3510C

Project Information:
Reference Number: 16-07632
Project: Walla Walla Basin Aquifer Recharge
Report Date: 5/5/16
Date Analyzed: 4/18/16
Analyst: KAH
Analytical Method: 8151A
Batch: 8151W_160412
Approved By: pdm.rjk
Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Table:

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-85-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBIEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
- Notes: If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17650
Field ID: Stiller Pond
Sample Description: GW_145
Matrix: Water
Sample Date: 4/14/16
Extraction Date: 4/11/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-32-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>683-20-6</td>
<td>1,1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-60-2</td>
<td>1,2-DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>514-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-7</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
1. ND - indicates the compound was not detected above the PQL or MDL.
2. Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
3. Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
4. D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab Permit QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td>Screening Only</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17649
Field ID: Stiller Pond
Sample Description: GW_136
Matrix: Water
Sample Date: 4/7/16
Extraction Date: 4/13/16
Extraction Method: 3535

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4` - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4` - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4` - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
Table: Data Report

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-86-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-85-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBIEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17649
Field ID: Stiller Pond
Sample Description: GW_136
Matrix: Water
Sample Date: 4/7/16
Extraction Date: 4/11/16
Extraction Method: 5030B

Reference Number: Project: Walla Walla Basin Aquifer Re

Report Date: 5/5/16
Date Analyzed: 4/11/16
Analysis: HY
Analytical Method: 8260C
Batch: 8260W_160411
Approved By: pdm, rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
TABLE 1: 5/5/16 16-07632 17649

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>10061-01-f</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M.P. - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLEN BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>10061-02-i</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td></td>
<td>1.00</td>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.

D.F. - Dilution Factor.

Screening Only

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City, State: Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number:</th>
<th>17648</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field ID:</td>
<td>Stiller Pond</td>
</tr>
<tr>
<td>Sample Description:</td>
<td>Mill Creek</td>
</tr>
<tr>
<td>Matrix:</td>
<td>Surface Water</td>
</tr>
<tr>
<td>Sample Date:</td>
<td>4/7/16</td>
</tr>
<tr>
<td>Extraction Date:</td>
<td>4/13/16</td>
</tr>
<tr>
<td>Extraction Method:</td>
<td>3535</td>
</tr>
</tbody>
</table>

Table of Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.024</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>33236-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDURIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDURIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDURIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.011</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.034</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17648
Field ID: Stiller Pond
Sample Description: Mill Creek
Matrix: Surface Water
Sample Date: 4/7/16
Extraction Date: 4/12/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-8</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4-5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>86-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-0</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-80-0</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 17648
Field ID: Still Pond
Sample Description: Mill Creek
Matrix: Surface Water
Sample Date: 4/7/16
Extraction Date: 4/11/16
Extraction Method: 5030B

Reference Number: 16-07632
Project: Walla Walla Basin Aquifer Re

Report Date: 5/5/16
Date Analyzed: 4/11/16
Analyst: HY
Analytical Method: 8260C
Batch: 8260W_160411
Approved By: pdm.rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOOROTHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>565-68-6</td>
<td>1,1 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROTHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBNENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBNENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M.P. - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLENENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Calibration Check

Reference Number: 16-07632
Report Date: 05/05/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC</th>
<th>QC Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>2 CALCIUM</td>
<td>10.2</td>
<td>11</td>
<td>mg/L</td>
<td>200.7</td>
<td>93</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 IRON</td>
<td>1.02</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>102</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 MANGANESE</td>
<td>1.07</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>107</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>0 ARSENIC</td>
<td>0.00101</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>101</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BARIUM</td>
<td>0.00104</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CADMIUM</td>
<td>0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHROMIUM</td>
<td>0.00093</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>93</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 COPPER</td>
<td>0.00097</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>97</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 LEAD</td>
<td>0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SELENIUM</td>
<td>0.00099</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SILVER</td>
<td>0.00101</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>101</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ZINC</td>
<td>0.00109</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>109</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160413</td>
<td>0 MERCURY</td>
<td>0.00197</td>
<td>0.00200</td>
<td>mg/L</td>
<td>245.1</td>
<td>99</td>
<td>95-105</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 MERCURY</td>
<td>0.00019</td>
<td>0.00020</td>
<td>mg/L</td>
<td>245.1</td>
<td>95</td>
<td>95-105</td>
<td>MRL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>0 CHLORIDE</td>
<td>1.03</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>103</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 FLUORIDE</td>
<td>1.06</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>106</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SULFATE</td>
<td>2.0</td>
<td>2</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160415A</td>
<td>0 CHLORIDE</td>
<td>1.0</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 FLUORIDE</td>
<td>1.05</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>105</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SULFATE</td>
<td>2</td>
<td>2</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160408</td>
<td>0 ORTHO-PHOSPHATE</td>
<td>0.98</td>
<td>1.00</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>98</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160415</td>
<td>0 ORTHO-PHOSPHATE</td>
<td>0.97</td>
<td>1.00</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>97</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH_160408</td>
<td>0 HYDROGEN ION (pH)</td>
<td>7.95</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 HYDROGEN ION (pH)</td>
<td>7.98</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH_160415</td>
<td>0 HYDROGEN ION (pH)</td>
<td>7.95</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Calibration Check

Reference Number: 16-07632
Report Date: 05/05/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH_160415</td>
<td>HYDROGEN ION (pH)</td>
<td>8.01</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.099</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>99</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160414</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.095</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>95</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160408</td>
<td>TURBIDITY</td>
<td>9.86</td>
<td>NTU</td>
<td>180.1</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160415</td>
<td>TURBIDITY</td>
<td>9.85</td>
<td>NTU</td>
<td>180.1</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>CALCIUM</td>
<td>12.3</td>
<td>13</td>
<td>mg/L</td>
<td>200.7</td>
<td>95</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>0.48</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>0.5</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>ARSENIC</td>
<td>0.023</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>92</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.031</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>124</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.013</td>
<td>0.0125</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.031</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>124</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>245.1_160413</td>
<td>MERCURY</td>
<td>0.00163</td>
<td>0.00167</td>
<td>mg/L</td>
<td>245.1</td>
<td>98</td>
<td>90-110</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>8151W_160412</td>
<td>2,4 - D</td>
<td>2.1</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>105</td>
<td>60-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>9.5</td>
<td>8</td>
<td>ug/L</td>
<td>8151A</td>
<td>119</td>
<td>49-136</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>0.99</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>99</td>
<td>68-122</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>62-128</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>65-125</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZATON</td>
<td>2.2</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>110</td>
<td>67-121</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>13</td>
<td>13</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>53-142</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>110</td>
<td>66-126</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>3.1</td>
<td>3</td>
<td>ug/L</td>
<td>8151A</td>
<td>103</td>
<td>63-123</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSORB</td>
<td>2.2</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>110</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>69-123</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>0.88</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>88</td>
<td>48-114</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>0.71</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>71</td>
<td>48-168</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICLOPYR</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,1 - DICHLOROETHANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation: % Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 16-07632
Report Date: 05/05/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>1,1- DICHLOROETHYLENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1- DICHLOROPROPENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1- TRICHLOROETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2 - DICHLOROETHANE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2- DICHLOROETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4-DIBROMO-3-CHLOROPROPANE</td>
<td>4.6</td>
<td>ug/L</td>
<td>8260C</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3- DICHLOROPROPANE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPANE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 16-07632
Report Date: 05/05/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>3.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>85</td>
<td>70-130</td>
<td>LE</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYLBENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.P.-XYLENE</td>
<td>8.3</td>
<td>ug/L</td>
<td>8260C</td>
<td>104</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>3.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>85</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLEMBENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYLTOluene</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLBENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLBENZENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td></td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>4.7</td>
<td>ug/L</td>
<td>8260C</td>
<td>118</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>95</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>CALCIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>ARSENIC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>ND</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>ND</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160415A</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>ND</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>ND</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160408</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160415</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160414</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 16-07632
Report Date: 05/05/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>0 CALCIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 IRON</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 MANGANES</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413Wv</td>
<td>0 ARSENIC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BARIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CADMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHROMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 COPPER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 LEAD</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SELENIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SILVER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ZINC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160413</td>
<td>0 MERCURY</td>
<td>ND</td>
<td>mg/L</td>
<td>245.1</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160412</td>
<td>0 2,4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BENZAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 TRICLOPYR</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>0 1,1 - DICHLOOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 16-07632

Report Date: 05/05/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160411</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation: % Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Sampling Independent Quality Control Report

Reference Number: 16-07632
Report Date: 05/05/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits* Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>DIBUTROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBUTROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.P. XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLEN BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYL TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1.2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1.3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07437</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 16-07632
Report Date: 05/05/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Type</th>
<th>QC Qualifier</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRIMETHYLBenZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-DIBromo-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYLBenZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: **16-07632**
Report Date: **05/05/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160411</td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.P.-XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N - PROPYLENENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.P.-XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-07713</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPHOS_160408</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPHOS_160415</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDS_160411</td>
<td>ND</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>0-3</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Reference Number: 16-07632
Report Date: 05/05/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS_160413</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>ND</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td></td>
<td>0-3</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td></td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160414</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td></td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160408</td>
<td>TURBIDITY</td>
<td>ND</td>
<td>NTU</td>
<td>180.1</td>
<td></td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160415</td>
<td>TURBIDITY</td>
<td>ND</td>
<td>NTU</td>
<td>180.1</td>
<td></td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample
Reference Number: **16-07632**
Report Date: **05/05/16**

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>IRON</td>
<td>2.08</td>
<td>2</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.7_160413B</td>
<td>MANGANSE</td>
<td>2.08</td>
<td>2</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.7_160413B</td>
<td>CALCIUM</td>
<td>19.3</td>
<td>20</td>
<td>mg/L</td>
<td>200.7</td>
<td>97</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>ARSENIC</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>BARIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>CADMIUM</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>CHROMIUM</td>
<td>0.039</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>COPPER</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>LEAD</td>
<td>0.039</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>SELENIUM</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>SILVER</td>
<td>0.021</td>
<td>0.020</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WV</td>
<td>ZINC</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160413</td>
<td>MERCURY</td>
<td>0.00270</td>
<td>0.00265</td>
<td>mg/L</td>
<td>245.1</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOR_160408</td>
<td>COLOR</td>
<td>10</td>
<td>10</td>
<td>CU</td>
<td>SM2120 B</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOR_160415</td>
<td>COLOR</td>
<td>10</td>
<td>10</td>
<td>CU</td>
<td>SM2120 B</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>CHLORIDE</td>
<td>6.1</td>
<td>6</td>
<td>mg/L</td>
<td>300.0</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>FLUORIDE</td>
<td>4.19</td>
<td>4</td>
<td>mg/L</td>
<td>300.0</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td>SULFATE</td>
<td>30.5</td>
<td>30</td>
<td>mg/L</td>
<td>300.0</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160415A</td>
<td>CHLORIDE</td>
<td>5.8</td>
<td>6</td>
<td>mg/L</td>
<td>300.0</td>
<td>97</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160415A</td>
<td>FLUORIDE</td>
<td>4.06</td>
<td>4</td>
<td>mg/L</td>
<td>300.0</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160415A</td>
<td>SULFATE</td>
<td>30.5</td>
<td>30</td>
<td>mg/L</td>
<td>300.0</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160408</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.47</td>
<td>0.50</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>94</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160415</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.47</td>
<td>0.50</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>94</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160411</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>500</td>
<td>500</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS_160413</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>502</td>
<td>500</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.036</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160414</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.037</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TURB_160408</td>
<td>TURBIDITY</td>
<td>1.01</td>
<td>1.00</td>
<td>NTU</td>
<td>180.1</td>
<td>101</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TURB_160415</td>
<td>TURBIDITY</td>
<td>1.00</td>
<td>1.00</td>
<td>NTU</td>
<td>180.1</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Duplicate, Matrix Spike/Matrix Spike Duplicate and Confirmation Result Report

200.7_160413B

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate</th>
<th>QC</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Result</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>IRON</td>
<td>0.39</td>
<td>0.37</td>
<td></td>
<td>5.3</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>MANGANESE</td>
<td>0.0076</td>
<td>0.0076</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>CALCIUM</td>
<td>35.2</td>
<td>36.3</td>
<td></td>
<td>3.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>IRON</td>
<td>0.44</td>
<td>0.41</td>
<td></td>
<td>7.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>MANGANESE</td>
<td>0.015</td>
<td>0.014</td>
<td></td>
<td>6.9</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

200.8_160413WW

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate</th>
<th>QC</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Result</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>ARSENIC</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>BARIUM</td>
<td>0.038</td>
<td>0.039</td>
<td></td>
<td>2.6</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>CADMIUM</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>CHROMIUM</td>
<td>0.0005</td>
<td>0.0005</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>COPPER</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>LEAD</td>
<td>0.00012</td>
<td>0.00013</td>
<td></td>
<td>8.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.0004</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>SILVER</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>ZINC</td>
<td>0.0015</td>
<td>0.002</td>
<td></td>
<td>28.6</td>
<td>0-20</td>
<td>IEV DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>ARSENIC</td>
<td>0.006</td>
<td>0.006</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>BARIUM</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>CADMIUM</td>
<td>0.0005</td>
<td>0.0005</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>CHROMIUM</td>
<td>0.075</td>
<td>0.073</td>
<td></td>
<td>2.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>COPPER</td>
<td>0.017</td>
<td>0.016</td>
<td></td>
<td>6.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.00047</td>
<td></td>
<td>16.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>SILVER</td>
<td>0.0014</td>
<td>0.0014</td>
<td></td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>ZINC</td>
<td>0.044</td>
<td>0.042</td>
<td></td>
<td>4.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- %RPD = Relative Percent Difference
- NA = Indicates %RPD could not be calculated
- Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
- Only Duplicate sample with detections are listed in this report.
- Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch. Only Duplicate sample with detections are listed in this report. Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Duplicate Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>NA</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8151W_160412</td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17577</td>
<td>2.4 - D</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>2.4 DB</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>2.4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>2.4,5 T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>3.5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>BENTAZON</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>DALAPON</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>DICAMBA</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>DINOSEB</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>PICLORAM</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17650</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>COLOR_160408</td>
<td></td>
<td>COLOR</td>
<td>8</td>
<td>8</td>
<td>Color Units</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>COLOR_160415</td>
<td></td>
<td>COLOR</td>
<td>ND</td>
<td>ND</td>
<td>Color Units</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td></td>
<td>CHLORIDE</td>
<td>2.8</td>
<td>2.9</td>
<td>mg/L</td>
<td>3.5</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17726</td>
<td>SULFATE</td>
<td>10.6</td>
<td>10.6</td>
<td></td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>17731</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>I160415A</td>
<td></td>
<td>CHLORIDE</td>
<td>5.3</td>
<td>5.3</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>19185</td>
<td>SULFATE</td>
<td>10.1</td>
<td>10.1</td>
<td></td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>19185</td>
<td>CHLORIDE</td>
<td>8.2</td>
<td>8.2</td>
<td></td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>19186</td>
<td>SULFATE</td>
<td>9</td>
<td>9</td>
<td></td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>NO3NO2_160408</td>
<td></td>
<td>NITRATE-N</td>
<td>4.52</td>
<td>4.53</td>
<td>mg/L</td>
<td>0.2</td>
<td>0-20</td>
<td></td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>Batch</td>
<td>Sample</td>
<td>Analyte</td>
<td>Result</td>
<td>Duplicate Result</td>
<td>Units</td>
<td>%RPD</td>
<td>Limits</td>
<td>Qualifier</td>
<td>Type</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>--------------------</td>
<td>--------</td>
<td>------------------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>OPHOS_160408</td>
<td></td>
<td>NITRATE-N</td>
<td>7.17</td>
<td>7.33</td>
<td>mg/L</td>
<td>2.2</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17649</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.27</td>
<td>0.28</td>
<td>mg/L</td>
<td>3.6</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17648</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.17</td>
<td>0.18</td>
<td>mg/L</td>
<td>5.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH_160408</td>
<td></td>
<td>HYDROGEN ION (pH)</td>
<td>7.78</td>
<td>7.82</td>
<td>pH Units</td>
<td>0.5</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17649</td>
<td>HYDROGEN ION (pH)</td>
<td>7.44</td>
<td>7.45</td>
<td>pH Units</td>
<td>0.1</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160411</td>
<td>17726</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>151</td>
<td>151</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160413</td>
<td>17215</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>248</td>
<td>242</td>
<td>mg/L</td>
<td>2.4</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td>17550</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.286</td>
<td>0.298</td>
<td>mg/L</td>
<td>4.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17560</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.258</td>
<td>0.231</td>
<td>mg/L</td>
<td>11.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17649</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.705</td>
<td>0.700</td>
<td>mg/L</td>
<td>0.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160414</td>
<td>18331</td>
<td>TOTAL PHOSPHORUS</td>
<td>8.19</td>
<td>7.86</td>
<td>mg/L</td>
<td>4.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18790</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160408</td>
<td>17649</td>
<td>TURBIDITY</td>
<td>387</td>
<td>402</td>
<td>NTU</td>
<td>3.8</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160415</td>
<td>17648</td>
<td>TURBIDITY</td>
<td>5.43</td>
<td>5.38</td>
<td>NTU</td>
<td>0.9</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike - Spike</th>
<th>Spike Conc</th>
<th>Units</th>
<th>MS</th>
<th>MSD</th>
<th>Limits*</th>
<th>%RPD</th>
<th>Limits*</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160413B</td>
<td>17652</td>
<td>IRON</td>
<td>0.39</td>
<td>0.38</td>
<td>0.025</td>
<td>mg/L</td>
<td>-40</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>MANGANESE</td>
<td>0.0076</td>
<td>0.033</td>
<td>0.025</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>IRON</td>
<td>0.44</td>
<td>0.45</td>
<td>0.025</td>
<td>mg/L</td>
<td>40</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>MANGANESE</td>
<td>0.015</td>
<td>0.040</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160413WW</td>
<td>17652</td>
<td>ARSENIC</td>
<td>0.004</td>
<td>0.028</td>
<td>0.025</td>
<td>mg/L</td>
<td>96</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>BARIUM</td>
<td>0.038</td>
<td>0.063</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.0241</td>
<td>0.025</td>
<td>mg/L</td>
<td>96</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>CHROMIUM</td>
<td>0.0005</td>
<td>0.0254</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>COPPER</td>
<td>0.001</td>
<td>0.0274</td>
<td>0.025</td>
<td>mg/L</td>
<td>106</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>LEAD</td>
<td>0.00012</td>
<td>0.0257</td>
<td>0.025</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.023</td>
<td>0.025</td>
<td>mg/L</td>
<td>90</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0128</td>
<td>0.0125</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>ZINC</td>
<td>0.0015</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>90</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>ARSENIC</td>
<td>0.006</td>
<td>0.0315</td>
<td>0.025</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>BARIUM</td>
<td>0.004</td>
<td>0.032</td>
<td>0.025</td>
<td>mg/L</td>
<td>112</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>CADMIUM</td>
<td>0.0005</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>94</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>CHROMIUM</td>
<td>0.075</td>
<td>0.103</td>
<td>0.025</td>
<td>mg/L</td>
<td>112</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>COPPER</td>
<td>0.017</td>
<td>0.042</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>SILVER</td>
<td>0.0014</td>
<td>0.014</td>
<td>0.0125</td>
<td>mg/L</td>
<td>101</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18031</td>
<td>ZINC</td>
<td>0.044</td>
<td>0.066</td>
<td>0.025</td>
<td>mg/L</td>
<td>88</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160413</td>
<td>17577</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00170</td>
<td>0.00170</td>
<td>0.00167</td>
<td>mg/L</td>
<td>102</td>
<td>102</td>
<td>70-130</td>
<td>0.0</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160412</td>
<td>17242</td>
<td>2.4 - D</td>
<td>ND</td>
<td>2.1</td>
<td>2</td>
<td>ug/L</td>
<td>105</td>
<td>NA</td>
<td>60-120</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>2.4 DB</td>
<td>ND</td>
<td>9.7</td>
<td>8</td>
<td>ug/L</td>
<td>121</td>
<td>NA</td>
<td>49-134</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>2.4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>110</td>
<td>NA</td>
<td>68-122</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>2.4,5 T</td>
<td>ND</td>
<td>0.98</td>
<td>1</td>
<td>ug/L</td>
<td>98</td>
<td>NA</td>
<td>62-128</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>110</td>
<td>NA</td>
<td>65-125</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>BENTAZON</td>
<td>ND</td>
<td>1.9</td>
<td>2</td>
<td>ug/L</td>
<td>95</td>
<td>NA</td>
<td>67-121</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>DALAPON</td>
<td>ND</td>
<td>14.8</td>
<td>13</td>
<td>ug/L</td>
<td>114</td>
<td>NA</td>
<td>53-421</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Spike Units</th>
<th>Percent Recovery</th>
<th>Limits</th>
<th>%RPD</th>
<th>Limits</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>17242</td>
<td>DICAMBA</td>
<td>ND</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>110</td>
<td>NA</td>
<td>66-126</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>3.3</td>
<td>3</td>
<td>ug/L</td>
<td>110</td>
<td>NA</td>
<td>63-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>DINOSEB</td>
<td>ND</td>
<td>2.2</td>
<td>2</td>
<td>ug/L</td>
<td>110</td>
<td>NA</td>
<td>73-127</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>69-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>PICLORAM</td>
<td>ND</td>
<td>0.86</td>
<td>1</td>
<td>ug/L</td>
<td>86</td>
<td>NA</td>
<td>48-114</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17242</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>0.81</td>
<td>1</td>
<td>ug/L</td>
<td>81</td>
<td>NA</td>
<td>48-168</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160408A</td>
<td></td>
</tr>
<tr>
<td>17726</td>
<td>CHLORIDE</td>
<td>2.8</td>
<td>3.8</td>
<td>1</td>
<td>mg/L</td>
<td>100</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17726</td>
<td>SULFATE</td>
<td>10.6</td>
<td>12.6</td>
<td>2</td>
<td>mg/L</td>
<td>100</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17731</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>1.08</td>
<td>1</td>
<td>mg/L</td>
<td>108</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160415A</td>
<td></td>
</tr>
<tr>
<td>19185</td>
<td>CHLORIDE</td>
<td>5.3</td>
<td>6.2</td>
<td>1</td>
<td>mg/L</td>
<td>90</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19185</td>
<td>SULFATE</td>
<td>10.1</td>
<td>11.9</td>
<td>2</td>
<td>mg/L</td>
<td>90</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19186</td>
<td>CHLORIDE</td>
<td>8.2</td>
<td>8.9</td>
<td>1</td>
<td>mg/L</td>
<td>70</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>19186</td>
<td>SULFATE</td>
<td>9</td>
<td>10.7</td>
<td>2</td>
<td>mg/L</td>
<td>85</td>
<td>NA</td>
<td>90-110</td>
<td>NA</td>
<td>0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>NO3NO2_160408</td>
<td></td>
<td>NITRATE-N</td>
<td>4.52</td>
<td>4.91</td>
<td>4.99</td>
<td>0.5</td>
<td>mg/L</td>
<td>78</td>
<td>94</td>
<td>80-120</td>
<td>18.6</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>NO3NO2_160415</td>
<td></td>
<td>NITRATE-N</td>
<td>7.17</td>
<td>7.75</td>
<td>7.74</td>
<td>0.5</td>
<td>mg/L</td>
<td>116</td>
<td>114</td>
<td>80-120</td>
<td>1.7</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>OPHOS_160408</td>
<td></td>
<td>ORTHO-PHOSPHATE</td>
<td>0.27</td>
<td>1.22</td>
<td>1.23</td>
<td>1.00</td>
<td>mg/L</td>
<td>95</td>
<td>96</td>
<td>70-130</td>
<td>1.0</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>OPHOS_160415</td>
<td></td>
<td>ORTHO-PHOSPHATE</td>
<td>0.17</td>
<td>1.12</td>
<td>1.11</td>
<td>1.00</td>
<td>mg/L</td>
<td>95</td>
<td>94</td>
<td>70-130</td>
<td>1.1</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>TPHOS_160412</td>
<td></td>
<td>TOTAL PHOSPHORUS</td>
<td>0.286</td>
<td>0.340</td>
<td>0.332</td>
<td>0.050</td>
<td>mg/L</td>
<td>108</td>
<td>92</td>
<td>70-130</td>
<td>16.0</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>TPHOS_160414</td>
<td></td>
<td>TOTAL PHOSPHORUS</td>
<td>0.258</td>
<td>0.326</td>
<td>0.339</td>
<td>0.050</td>
<td>mg/L</td>
<td>136</td>
<td>162</td>
<td>70-130</td>
<td>17.4</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>17550</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.705</td>
<td>0.812</td>
<td>0.808</td>
<td>0.100</td>
<td>mg/L</td>
<td>107</td>
<td>103</td>
<td>70-130</td>
<td>3.8</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td>17652</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.176</td>
<td>0.240</td>
<td>0.220</td>
<td>0.050</td>
<td>mg/L</td>
<td>128</td>
<td>88</td>
<td>70-130</td>
<td>37.0</td>
<td>0-20</td>
<td>INH</td>
<td></td>
</tr>
<tr>
<td>18331</td>
<td>TOTAL PHOSPHORUS</td>
<td>8.19</td>
<td>11.5</td>
<td>11.9</td>
<td>0.050</td>
<td>mg/L</td>
<td>6,620</td>
<td>7,420</td>
<td>70-130</td>
<td>11.4</td>
<td>0-20</td>
<td>IS</td>
<td></td>
</tr>
<tr>
<td>18790</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>0.054</td>
<td>0.055</td>
<td>0.050</td>
<td>mg/L</td>
<td>108</td>
<td>110</td>
<td>70-130</td>
<td>1.8</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

Form: QC Dependent.rpt
Qualifier Definitions

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3</td>
<td>Sample was received and analyzed past holding time.</td>
</tr>
<tr>
<td>H5</td>
<td>This test is specified to be performed in the field within 15 minutes of sampling; sample was received and analyzed past the regulatory holding time.</td>
</tr>
<tr>
<td>IEV</td>
<td>Acceptance criteria do not apply to estimated values</td>
</tr>
<tr>
<td>INH</td>
<td>The sample was non-homogeneous</td>
</tr>
<tr>
<td>IS</td>
<td>The ratio of the spike concentration to sample background was too low to meet performance criteria</td>
</tr>
<tr>
<td>J</td>
<td>Indicates an estimated concentration. This occurs when an analyte concentration is below the calibration curve but is above the method detection limit.</td>
</tr>
<tr>
<td>LE</td>
<td>The end calibration verification for this compound was below the acceptance limit. There were no sample detections and there was adequate sensitivity at the reporting limit. No further action taken with this sample batch.</td>
</tr>
<tr>
<td>LR</td>
<td>Low recovery can not be accounted for. However, there is adequate sensitivity to detect the compound at the lower PQL. No sample detections so no further action for this analysis batch.</td>
</tr>
<tr>
<td>N1</td>
<td>See case narrative.</td>
</tr>
</tbody>
</table>

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.
April 28, 2016

Vista Work Order No. 1600387

Mr. Steven Patten
Walla Walla Basin Watershed Council
810 S. Main Street
Milton-Freewater, OR 97862

Dear Mr. Patten,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on April 08, 2016. This sample set was analyzed on a standard turn-around time, under your Project Name 'Stiller Pond'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director
Case Narrative

Sample Condition on Receipt:

Five aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1668C

These samples were extracted and analyzed for 209 PCB congeners by EPA Method 1668C using a ZB-1 GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. PCB-11 was detected at 6.15 pg/L in the Method Blank. No other analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Narrative</td>
<td>1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Sample Inventory</td>
<td>4</td>
</tr>
<tr>
<td>Analytical Results</td>
<td>5</td>
</tr>
<tr>
<td>Qualifiers</td>
<td>32</td>
</tr>
<tr>
<td>Certifications</td>
<td>33</td>
</tr>
<tr>
<td>Sample Receipt</td>
<td>36</td>
</tr>
</tbody>
</table>
Sample Inventory Report

<table>
<thead>
<tr>
<th>Vista Sample ID</th>
<th>Client Sample ID</th>
<th>Sampled</th>
<th>Received</th>
<th>Components/Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600387-01</td>
<td>Mill Creek</td>
<td>07-Apr-16 09:25</td>
<td>08-Apr-16 09:26</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600387-02</td>
<td>GW_136</td>
<td>07-Apr-16 08:35</td>
<td>08-Apr-16 09:26</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600387-03</td>
<td>GW_145</td>
<td>07-Apr-16 09:00</td>
<td>08-Apr-16 09:26</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600387-04</td>
<td>GW_146</td>
<td>07-Apr-16 09:20</td>
<td>08-Apr-16 09:26</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600387-05</td>
<td>GW_147</td>
<td>07-Apr-16 08:10</td>
<td>08-Apr-16 09:26</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
</tbody>
</table>

Vista Project: 1600387
Client Project: Stiller Pond
Work Order: 1600387
ANALYTICAL RESULTS
Sample ID: Method Blank

EPA Method 1668C

Matrix: Aqueous
Sample Size: 1.00 L

QC Batch: B6D0088
Date Extracted: 20-Apr-2016 8:30

Lab Sample: B6D0088-BLK1
Date Analyzed: 20-Apr-16 20:10
Column: ZB-1
Analyst: MS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>2.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>1.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>6.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>0.816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.697</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>0.379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>0.854</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>ND</td>
<td>0.510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.507</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>ND</td>
<td>0.755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>0.818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>ND</td>
<td>0.936</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-44</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>ND</td>
<td>0.918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>ND</td>
<td>0.714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-53</td>
<td>ND</td>
<td>0.938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>0.839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>ND</td>
<td>0.615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>0.634</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>0.625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>ND</td>
<td>0.543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>0.744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>0.610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>0.768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>ND</td>
<td>0.602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>0.651</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>ND</td>
<td>0.628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>0.755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>ND</td>
<td>0.585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>ND</td>
<td>0.615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>ND</td>
<td>0.587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>ND</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>ND</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>1.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
Qualifiers - See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Sample ID: Method Blank</th>
<th>EPA Method 1668C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID:</td>
<td>Method Blank</td>
</tr>
<tr>
<td>Matrix:</td>
<td>Aqueous</td>
</tr>
<tr>
<td>Sample Size:</td>
<td>1.00 L</td>
</tr>
<tr>
<td>QC Batch:</td>
<td>B6D0088</td>
</tr>
<tr>
<td>Date Extracted:</td>
<td>20-Apr-2016 8:30</td>
</tr>
<tr>
<td>Lab Sample:</td>
<td>B6D0088-BLK1</td>
</tr>
<tr>
<td>Date Analyzed:</td>
<td>20-Apr-16 20:10</td>
</tr>
<tr>
<td>Column:</td>
<td>ZB-1</td>
</tr>
<tr>
<td>Analyst:</td>
<td>MS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>1.83</td>
<td>0.753</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>1.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.766</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.911</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.976</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Analyte Concentration Summary

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.754</td>
<td></td>
<td></td>
<td>Total octaCB</td>
<td>ND</td>
<td>0.470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.810</td>
<td></td>
<td></td>
<td>Total nonaCB</td>
<td>ND</td>
<td>0.583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.644</td>
<td></td>
<td></td>
<td>DecaCB</td>
<td>ND</td>
<td>0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.688</td>
<td></td>
<td></td>
<td>Total PCB</td>
<td>7.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.778</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.553</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.556</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.902</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.583</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>6.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>0.854</td>
<td>2.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>ND</td>
<td>3.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>ND</td>
<td>0.753</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>0.833</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **DL** - Sample specific estimated detection limit
- **EMPC** - Estimated maximum possible concentration
- **LCL-UCL** - Lower control limit - upper control limit
- See individual congeners for qualifiers.
Sample ID: E PA Method 1668C
Matrix: Aqueous
Sample Size: 1.00 L
QC Batch: B6D0088
Date Extracted: 20-Apr-2016 8:30
Lab Sample: B6D0088-BLK1
Date Analyzed: 20-Apr-16 20:10
Column: ZB-1
Analyst: MS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 13C-PCB-1</td>
<td>67.5</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>67.2</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>72.1</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>84.1</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>77.7</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>80.0</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>79.9</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>82.4</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>98.5</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>79.6</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>79.3</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>67.8</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>92.8</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>96.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>93.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>92.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>89.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>99.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>93.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>76.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>106</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>103</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>97.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>101</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>110</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>110</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>96.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>97.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>91.9</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>85.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>88.2</td>
<td>10-145</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-157</td>
<td>89.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>94.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>93.9</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>87.5</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-170</td>
<td>80.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>77.3</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>74.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>80.5</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>92.5</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>71.8</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>89.3</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>75.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>86.8</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>CRS 13C-PCB-79</td>
<td>97.5</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>91.7</td>
<td>10-145</td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
EMPC - Estimated maximum possible concentration
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/L)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Limits</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>747</td>
<td>1000</td>
<td>74.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-1</td>
<td>17.1</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-3</td>
<td>757</td>
<td>1000</td>
<td>75.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-3</td>
<td>27.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>1620</td>
<td>2000</td>
<td>81.0</td>
<td>60 - 135</td>
<td>IS 13C-PCB-4</td>
<td>31.7</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-15</td>
<td>870</td>
<td>1000</td>
<td>87.0</td>
<td>60 - 135</td>
<td>IS 13C-PCB-11</td>
<td>58.7</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-19</td>
<td>955</td>
<td>1000</td>
<td>95.5</td>
<td>60 - 135</td>
<td>IS 13C-PCB-9</td>
<td>39.5</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-37</td>
<td>948</td>
<td>1000</td>
<td>94.8</td>
<td>60 - 135</td>
<td>IS 13C-PCB-19</td>
<td>50.3</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-54</td>
<td>954</td>
<td>1000</td>
<td>95.4</td>
<td>60 - 135</td>
<td>IS 13C-PCB-28</td>
<td>63.3</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-77</td>
<td>877</td>
<td>1000</td>
<td>87.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-32</td>
<td>65.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-81</td>
<td>878</td>
<td>1000</td>
<td>87.8</td>
<td>60 - 135</td>
<td>IS 13C-PCB-37</td>
<td>86.8</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-104</td>
<td>922</td>
<td>1000</td>
<td>92.2</td>
<td>60 - 135</td>
<td>IS 13C-PCB-47</td>
<td>66.2</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-105</td>
<td>789</td>
<td>1000</td>
<td>78.9</td>
<td>60 - 135</td>
<td>IS 13C-PCB-52</td>
<td>66.8</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>1870</td>
<td>2000</td>
<td>93.4</td>
<td>60 - 135</td>
<td>IS 13C-PCB-54</td>
<td>50.7</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-114</td>
<td>762</td>
<td>1000</td>
<td>76.2</td>
<td>60 - 135</td>
<td>IS 13C-PCB-70</td>
<td>80.2</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-123</td>
<td>941</td>
<td>1000</td>
<td>94.1</td>
<td>60 - 135</td>
<td>IS 13C-PCB-77</td>
<td>95.5</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-126</td>
<td>809</td>
<td>1000</td>
<td>80.9</td>
<td>60 - 135</td>
<td>IS 13C-PCB-80</td>
<td>84.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-155</td>
<td>899</td>
<td>1000</td>
<td>89.9</td>
<td>60 - 135</td>
<td>IS 13C-PCB-81</td>
<td>91.0</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-156</td>
<td>897</td>
<td>1000</td>
<td>89.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-95</td>
<td>81.0</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-157</td>
<td>921</td>
<td>1000</td>
<td>92.1</td>
<td>60 - 135</td>
<td>IS 13C-PCB-97</td>
<td>95.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-167</td>
<td>917</td>
<td>1000</td>
<td>91.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-101</td>
<td>89.3</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-169</td>
<td>924</td>
<td>1000</td>
<td>92.4</td>
<td>60 - 135</td>
<td>IS 13C-PCB-104</td>
<td>62.1</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-188</td>
<td>938</td>
<td>1000</td>
<td>93.8</td>
<td>60 - 135</td>
<td>IS 13C-PCB-105</td>
<td>115</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-189</td>
<td>951</td>
<td>1000</td>
<td>95.1</td>
<td>60 - 135</td>
<td>IS 13C-PCB-114</td>
<td>107</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-202</td>
<td>939</td>
<td>1000</td>
<td>93.9</td>
<td>60 - 135</td>
<td>IS 13C-PCB-118</td>
<td>95.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-205</td>
<td>876</td>
<td>1000</td>
<td>87.6</td>
<td>60 - 135</td>
<td>IS 13C-PCB-123</td>
<td>99.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-206</td>
<td>995</td>
<td>1000</td>
<td>99.5</td>
<td>60 - 135</td>
<td>IS 13C-PCB-126</td>
<td>113</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-208</td>
<td>1020</td>
<td>1000</td>
<td>102</td>
<td>60 - 135</td>
<td>IS 13C-PCB-127</td>
<td>116</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-209</td>
<td>913</td>
<td>1000</td>
<td>91.3</td>
<td>60 - 135</td>
<td>IS 13C-PCB-138</td>
<td>102</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-141</td>
<td>98.5</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-153</td>
<td>98.9</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-155</td>
<td>78.3</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-156</td>
<td>91.8</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-157</td>
<td>90.9</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-159</td>
<td>96.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-167</td>
<td>95.1</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-169</td>
<td>100</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-170</td>
<td>83.9</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-180</td>
<td>81.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-188</td>
<td>84.9</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-189</td>
<td>74.9</td>
<td>40 - 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS 13C-PCB-194</td>
<td>98.8</td>
<td>40 - 145</td>
</tr>
</tbody>
</table>
Sample ID: OPR
EPA Method 1668C

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/L)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Limits</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 13C-PCB-202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75.6</td>
<td>40 - 145</td>
</tr>
<tr>
<td>IS 13C-PCB-206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td>IS 13C-PCB-208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81.3</td>
<td>40 - 145</td>
</tr>
<tr>
<td>IS 13C-PCB-209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92.5</td>
<td>40 - 145</td>
</tr>
<tr>
<td>CRS 13C-PCB-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td>CRS 13C-PCB-178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91.0</td>
<td>40 - 145</td>
</tr>
</tbody>
</table>

LCL-UCL - Lower control limit - upper control limit
Sample ID: Mill Creek

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 9:25

Matrix: Aqueous

Sample Size: 0.958 L

Laboratory Data
- **Lab Sample:** 1600387-01
- **Date Receieved:** 08-Apr-2016 9:26
- **QC Batch:** B6D0088
- **Date Extracted:** 20-Apr-2016 8:30
- **Column:** ZB-1
- **Analyst:** MS

Analyte Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>0.790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>0.866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>0.864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>2.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>0.523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>2.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>9.94</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>0.522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>0.450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>2.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>3.16</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>1.61</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>4.70</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>0.524</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>2.48</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>1.75</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>0.775</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>3.43</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>3.38</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>1.04</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.579</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>0.673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>1.71</td>
<td></td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

Analyte Conc. (pg/L)

- **DL:** Sample specific estimated detection limit
- **EMPC:** Estimated maximum possible concentration
- **Qualifiers:** See individual congeners for qualifiers

Work Order 1600387

Page 12 of 37
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 9:25

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.958 L

Laboratory Data
- **Lab Sample:** 1600387-01
- **QC Batch:** B6D0088
- **Date Analyzed:** 20-Apr-16 21:16
- **Column:** ZB-1
- **Analyst:** MS
- **Date Received:** 08-Apr-2016 9:26
- **Date Extracted:** 20-Apr-16 8:30

Analyte Concentration Table

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>2.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>3.09</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>2.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>2.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>3.09</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>1.30</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>0.743</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>1.97</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>2.94</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.942</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: Mill Creek

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stillerd Pond
- **Date Collected:** 07-Apr-2016 9:25

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.958 L

Laboratory Data
- **Lab Sample:** 1600387-01
- **Date Received:** 08-Apr-2016 9:26
- **QC Batch:** B6D088
- **Date Extracted:** 20-Apr-2016 8:30
- **Date Analyzed:** 20-Apr-16 21:16
- **Column:** ZB-1
- **Analyst:** MS

<table>
<thead>
<tr>
<th>Analyte Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180 2.13</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-181 ND</td>
<td>0.694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187 ND</td>
<td></td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>PCB-183 ND</td>
<td>0.577</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184 ND</td>
<td>0.528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185 ND</td>
<td>0.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186 ND</td>
<td>0.485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188 ND</td>
<td>0.464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189 ND</td>
<td>0.478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190 ND</td>
<td>0.480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191 ND</td>
<td>0.503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192 ND</td>
<td>0.539</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193 ND</td>
<td>0.506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194 ND</td>
<td></td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>PCB-195 ND</td>
<td>0.503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203 0.957</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-197 ND</td>
<td>0.988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198 ND</td>
<td>1.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199 ND</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200 ND</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201 ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202 ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204 ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205 ND</td>
<td></td>
<td>0.372</td>
<td></td>
</tr>
<tr>
<td>PCB-206 ND</td>
<td></td>
<td>0.662</td>
<td></td>
</tr>
<tr>
<td>PCB-207 ND</td>
<td></td>
<td>0.365</td>
<td></td>
</tr>
<tr>
<td>PCB-208 ND</td>
<td></td>
<td>0.433</td>
<td></td>
</tr>
<tr>
<td>PCB-209 1.06</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

Total monoCB ND	0.866		
Total diCB 9.94			
Total triCB 22.8	23.2		
Total tetraCB 17.8	23.6		
Total pentaCB 14.5	15.7		
Total hexaCB 9.35	11.0		
Total heptaCB 2.13	4.98		

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 9:25

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.958 L

Laboratory Data
- **Lab Sample:** 1600387-01
- **Date Received:** 08-Apr-2016 9:26
- **QC Batch:** B6D0088
- **Date Extracted:** 20-Apr-2016 8:30
- **Date Analyzed:** 20-Apr-2016 21:16
- **Column:** ZB-1
- **Analyst:** MS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>66.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>66.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>70.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>76.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>73.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>74.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>78.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>75.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>85.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>71.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>74.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>64.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>77.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>82.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>77.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>83.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>78.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>86.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>83.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>69.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>95.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>89.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>86.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>88.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>97.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>97.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>84.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>84.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>81.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>75.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>77.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>78.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>81.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>81.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>78.2</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Labeled Standard
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
- **See individual congeners for qualifiers.**
Sample ID: GW_136

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 8:35

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.987 L

Laboratory Data
- **Lab Sample:** 1600387-02
- **Date Received:** 08-Apr-2016 9:26
- **QC Batch:** B6D0088
- **Date Extracted:** 20-Apr-2016 8:30
- **Date Analyzed:** 20-Apr-16 22:21
- **Column:** ZB-1
- **Analyst:** MS

Sample Data Table

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>14.9</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>2.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>5.36</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>66.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>13.4</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>0.962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>22.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>13.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>35.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>4.28</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>16.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>8.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>3.07</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>1.98</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>4.25</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>19.8</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.915</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>0.565</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>2.57</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.990</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>4.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>1.93</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>3.68</td>
<td></td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 8:35

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.987 L

Laboratory Data
- **Lab Sample:** 1600387-02
- **Date Received:** 08-Apr-2016 9:26
- **QC Batch:** B6D0088
- **Date Extracted:** 20-Apr-2016 8:30
- **Date Analyzed:** 20-Apr-16 22:21
- **Column:** ZB-1
- **Analyst:** MS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>3.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>1.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>3.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>16.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>2.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>1.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>2.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>ND</td>
<td>1.80</td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>ND</td>
<td>2.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>2.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>ND</td>
<td>2.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>2.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>ND</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>2.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>2.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>1.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>ND</td>
<td>2.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-154</td>
<td>ND</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>1.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>ND</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.964</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: GW_136

Client Data
Name: Walla Walla Basin Watershed Council
Project: Stillers Pond
Date Collected: 07-Apr-2016 8:35

Sample Data
Matrix: Aqueous
Sample Size: 0.987 L

Laboratory Data
Lab Sample: 1600387-02
QC Batch: B6D0088
Date Received: 08-Apr-2016 9:26
Date Extracted: 20-Apr-2016 8:30
Date Analyzed: 20-Apr-16 22:21
Column: ZB-1
Analyst: MS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.881</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.951</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>2.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>2.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.776</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.820</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | | | |
|----------|----------|----------|----------|
| Total monoCB: | 20.2 | | | |
| Total diCB: | 137 | | | |
| Total triCB: | 152 | | | |
| Total tetraCB: | 28.3 | 36.0 | | |
| Total pentaCB: | ND | 16.6 | | |
| Total hexaCB: | 3.02 | | | |
| Total heptaCB: | ND | 1.50 | | |

Notes:
EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Sample ID: GW_136

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 8:35

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.987 L

Laboratory Data
- **Lab Sample:** 1600387-02
- **QC Batch:** B6D0088
- **Date Analyzed:** 20-Apr-2016 22:21
- **Column:** ZB-1
- **Analyst:** MS

Labeled Standard

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>49.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>51.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>57.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>61.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>59.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>56.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>64.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>57.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>67.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>60.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>60.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>53.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>61.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>66.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>62.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>66.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>61.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>68.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>63.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>57.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>75.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>69.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>67.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>68.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>75.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>77.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>67.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>66.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>64.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>57.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>61.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>61.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>63.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>63.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>61.3</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Labeled Standard (Continued)

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-170</td>
<td>56.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>55.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>50.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>56.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>64.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>48.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>61.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>52.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>59.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-79</td>
<td>70.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>61.9</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
- **See individual congeners for qualifiers.**
Sample ID: GW_145

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 9:00

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600387-03
- **Date Received:** 08-Apr-2016 9:26
- **QC Batch:** B6D0088
- **Date Extracted:** 20-Apr-2016 8:30
- **Date Analyzed:** 20-Apr-16 23:26
- **Column:** ZB-1
- **Analyst:** MS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>7.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>36.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>82.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>6.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>10.3</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>2.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>0.527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>30.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>3.62</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>17.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>9.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.40</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>2.16</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>3.56</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>17.3</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-32</td>
<td>ND</td>
<td>0.351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-33</td>
<td>ND</td>
<td>0.366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>2.00</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>0.511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>3.16</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>1.68</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>3.18</td>
<td></td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: GW_145

<table>
<thead>
<tr>
<th>Client Data</th>
<th>Sample Data</th>
<th>Laboratory Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Walla Walla Basin Watershed Council</td>
<td>Matrix: Aqueous</td>
<td>Lab Sample: 160037-03</td>
</tr>
<tr>
<td>Project: Stiller Pond</td>
<td>Sample Size: 1.02 L</td>
<td>Date Received: 08-Apr-2016</td>
</tr>
<tr>
<td>Date Collected: 07-Apr-2016</td>
<td>9:00</td>
<td>Date Extracted: 20-Apr-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Date Analyzed: 20-Apr-16 23:26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>0.902</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>1.09</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>0.515</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.908</td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>0.482</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.900</td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>0.755</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.880</td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.465</td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.870</td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.823</td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.554</td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.960</td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.922</td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.532</td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.512</td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.585</td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.763</td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.816</td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.795</td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.601</td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.739</td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.722</td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>0.869</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>0.607</td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>0.638</td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>ND</td>
<td>0.780</td>
<td>J</td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>0.716</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>0.891</td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>ND</td>
<td>0.650</td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>ND</td>
<td>0.810</td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>0.634</td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>ND</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>0.889</td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>0.847</td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>0.614</td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>ND</td>
<td>0.847</td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>0.593</td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>ND</td>
<td>0.561</td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>ND</td>
<td>0.778</td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>0.578</td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>ND</td>
<td>0.537</td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>ND</td>
<td>0.563</td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.512</td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.495</td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>ND</td>
<td>0.530</td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>ND</td>
<td>0.527</td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>0.495</td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>0.663</td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>ND</td>
<td>0.610</td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>ND</td>
<td>0.605</td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>ND</td>
<td>0.651</td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>0.797</td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>ND</td>
<td>0.684</td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>ND</td>
<td>0.636</td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.458</td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>0.696</td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.620</td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.479</td>
<td></td>
</tr>
</tbody>
</table>

- **DL** - Sample specific estimated detection limit
- **EMPC** - Estimated maximum possible concentration
- **LCL-UCL** - Lower control limit - upper control limit

See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Sample ID: GW_145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Data</td>
</tr>
<tr>
<td>Name: Walla Walla Basin Watershed Council</td>
</tr>
<tr>
<td>Project: Still Pond</td>
</tr>
<tr>
<td>Date Collected: 07-Apr-2016 9:00</td>
</tr>
<tr>
<td>Sample Data</td>
</tr>
<tr>
<td>Matrix: Aqueous</td>
</tr>
<tr>
<td>Sample Size: 1.02 L</td>
</tr>
<tr>
<td>Laboratory Data</td>
</tr>
<tr>
<td>Lab Sample: 1600387-03</td>
</tr>
<tr>
<td>QC Batch: B6D0088</td>
</tr>
<tr>
<td>Date Analyzed: 20-Apr-2016 23:26</td>
</tr>
<tr>
<td>Column: ZB-1</td>
</tr>
<tr>
<td>Analyst: MS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>0.608</td>
<td>0.608</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>0.653</td>
<td>0.653</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>0.586</td>
<td>0.586</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>0.545</td>
<td>0.545</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>0.498</td>
<td>0.498</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>0.627</td>
<td>0.627</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>0.457</td>
<td>0.457</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>0.438</td>
<td>0.438</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>0.432</td>
<td>0.432</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>0.453</td>
<td>0.453</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>0.473</td>
<td>0.473</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>0.507</td>
<td>0.507</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>0.476</td>
<td>0.476</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.578</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>0.375</td>
<td>0.375</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>0.862</td>
<td>0.862</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>0.613</td>
<td>0.613</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>0.948</td>
<td>0.948</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>0.964</td>
<td>0.964</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>0.691</td>
<td>0.691</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>0.652</td>
<td>0.652</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>0.701</td>
<td>0.701</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>0.665</td>
<td>0.665</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>0.266</td>
<td>0.266</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>0.463</td>
<td>0.463</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>0.312</td>
<td>0.312</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>0.316</td>
<td>0.316</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>0.486</td>
<td>0.486</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>26.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>36.9</td>
<td>41.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>3.74</td>
<td>4.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>0.716</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.797</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample Data

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>62.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>61.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>67.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>77.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>69.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>68.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>73.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>71.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>90.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>77.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>78.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>65.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>86.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>98.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>88.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>98.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>79.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>95.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>87.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>69.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>96.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>98.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>110</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>108</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>93.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>93.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>90.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>78.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>87.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>87.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>93.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>93.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>85.8</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Data

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-37</td>
<td>90.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>77.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>65.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>86.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>98.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>88.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>98.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>79.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>95.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>96.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>98.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>110</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>108</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>93.8</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

See individual congeners for qualifiers.

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
<td>PCB-44</td>
<td>2.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.22</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-45</td>
<td>0.898</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>6.81</td>
<td></td>
<td></td>
<td></td>
<td>PCB-46</td>
<td>0.670</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>32.7</td>
<td></td>
<td></td>
<td></td>
<td>PCB-47</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>80.8</td>
<td></td>
<td></td>
<td></td>
<td>PCB-48/75</td>
<td>0.723</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
<td>PCB-50</td>
<td>ND</td>
<td>0.713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>6.61</td>
<td>B</td>
<td></td>
<td></td>
<td>PCB-51</td>
<td>0.541</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>8.32</td>
<td></td>
<td></td>
<td></td>
<td>PCB-52/69</td>
<td>2.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>2.09</td>
<td></td>
<td></td>
<td>PCB-53</td>
<td>0.649</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>0.898</td>
<td></td>
<td></td>
<td>PCB-54</td>
<td>ND</td>
<td>0.542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>12.1</td>
<td></td>
<td></td>
<td></td>
<td>PCB-55</td>
<td>ND</td>
<td>0.389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
<td>PCB-56/60</td>
<td>0.941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
<td>PCB-57</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>29.3</td>
<td></td>
<td></td>
<td></td>
<td>PCB-58</td>
<td>ND</td>
<td>0.411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>3.24</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-61/70</td>
<td>1.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
<td>PCB-62</td>
<td>ND</td>
<td>0.520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>8.42</td>
<td></td>
<td></td>
<td></td>
<td>PCB-63</td>
<td>ND</td>
<td>0.401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.477</td>
<td></td>
<td></td>
<td>PCB-65</td>
<td>ND</td>
<td>0.536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.11</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-66/76</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>1.94</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-67</td>
<td>ND</td>
<td>0.428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>3.33</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-68</td>
<td>ND</td>
<td>0.438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>17.3</td>
<td>B</td>
<td></td>
<td></td>
<td>PCB-73</td>
<td>ND</td>
<td>0.531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.477</td>
<td></td>
<td></td>
<td>PCB-74</td>
<td>0.626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.442</td>
<td></td>
<td></td>
<td>PCB-75</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td>PCB-77</td>
<td>ND</td>
<td>0.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.443</td>
<td></td>
<td></td>
<td>PCB-78</td>
<td>ND</td>
<td>0.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.460</td>
<td></td>
<td></td>
<td>PCB-79</td>
<td>ND</td>
<td>0.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.445</td>
<td></td>
<td></td>
<td>PCB-80</td>
<td>ND</td>
<td>0.377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>1.71</td>
<td></td>
<td></td>
<td></td>
<td>PCB-81</td>
<td>ND</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.465</td>
<td></td>
<td></td>
<td>PCB-82</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.458</td>
<td></td>
<td></td>
<td>PCB-83</td>
<td>ND</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.841</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-84/92</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>2.79</td>
<td></td>
<td></td>
<td></td>
<td>PCB-85/116</td>
<td>ND</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>0.821</td>
<td></td>
<td></td>
<td>PCB-86</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>2.18</td>
<td>J</td>
<td></td>
<td></td>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>1.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample ID: GW_146

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 9:20

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600387-04
- **Date Received:** 08-Apr-2016 9:26
- **QC Batch:** B6D0088
- **Date Extracted:** 20-Apr-2016 8:30
- **Date Analyzed:** 21-Apr-16 00:31
- **Column:** ZB-1
- **Analyst:** MS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>0.809</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>0.697</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>0.801</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.911</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.898</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample Data

<table>
<thead>
<tr>
<th>Client Data</th>
<th>Sample Data</th>
<th>Laboratory Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Matrix:</td>
<td>Lab Sample:</td>
</tr>
<tr>
<td>Walla Walla Basin Watershed Council</td>
<td>Aqueous</td>
<td>1600387-04</td>
</tr>
<tr>
<td>Project:</td>
<td>Sample Size:</td>
<td>Date Received:</td>
</tr>
<tr>
<td>Stiller Pond</td>
<td>1.01 L</td>
<td>08-Apr-2016 9:26</td>
</tr>
<tr>
<td>Date Collected:</td>
<td></td>
<td>QC Batch:</td>
</tr>
<tr>
<td>07-Apr-2016 9:20</td>
<td></td>
<td>B6D0088</td>
</tr>
</tbody>
</table>

Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.697</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.592</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.586</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.555</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total monoCB: 25.1
Total diCB: 155
Total triCB: 130
Total tetraCB: 15.2
Total pentaCB: 2.31
Total hexaCB: ND
Total heptaCB: ND

Analyte and **Conc. (pg/L)**: Sample specific estimated detection limit

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octaCB</td>
<td>0.555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total nonaCB</td>
<td>ND</td>
<td>0.554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DecaCB</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PCB</td>
<td>329</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Sample ID: GW_146</th>
<th>EPA Method 1668C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Data</td>
<td></td>
</tr>
<tr>
<td>Name:</td>
<td>Walla Walla Basin Watershed Council</td>
</tr>
<tr>
<td>Project:</td>
<td>Stiller Pond</td>
</tr>
<tr>
<td>Date Collected:</td>
<td>07-Apr-2016 9:20</td>
</tr>
<tr>
<td>Sample Data</td>
<td></td>
</tr>
<tr>
<td>Matrix:</td>
<td>Aqueous</td>
</tr>
<tr>
<td>Sample Size:</td>
<td>1.01 L</td>
</tr>
<tr>
<td>Laboratory Data</td>
<td></td>
</tr>
<tr>
<td>Lab Sample:</td>
<td>1600387-04</td>
</tr>
<tr>
<td>Date Received:</td>
<td>08-Apr-2016 9:26</td>
</tr>
<tr>
<td>QC Batch:</td>
<td>B6D0088</td>
</tr>
<tr>
<td>Date Extracted:</td>
<td>20-Apr-2016 8:30</td>
</tr>
<tr>
<td>Date Analyzed:</td>
<td>21-Apr-16 00:31</td>
</tr>
<tr>
<td>Column:</td>
<td>ZB-1</td>
</tr>
<tr>
<td>Analyst:</td>
<td>MS</td>
</tr>
<tr>
<td>Sample Data</td>
<td></td>
</tr>
<tr>
<td>Labeled Standard</td>
<td>%R</td>
</tr>
<tr>
<td>IS 13C-PCB-1</td>
<td>64.2</td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>65.0</td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>71.1</td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>83.1</td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>75.5</td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>75.2</td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>90.0</td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>78.7</td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>105</td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>79.7</td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>84.7</td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>72.3</td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>97.4</td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>102</td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>96.6</td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>101</td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>91.8</td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>102</td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>95.1</td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>79.6</td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>115</td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>109</td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>110</td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>110</td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>115</td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>118</td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>101</td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>100</td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>99.2</td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>84.9</td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>94.2</td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>92.7</td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>97.3</td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>98.6</td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>93.2</td>
</tr>
</tbody>
</table>

- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- LCL-UCL - Lower control limit - upper control limit
- See individual congeners for qualifiers.
Sample ID: GW_147

Client Data
- Name: Walla Walla Basin Watershed Council
- Project: Stiller Pond
- Date Collected: 07-Apr-2016 8:10

Sample Data
- Matrix: Aqueous
- Sample Size: 1.01 L

Laboratory Data
- Lab Sample: 1600387-05
- QC Batch: B6D0088
- Date Analyzed: 21-Apr-16 01:36
- Column: ZB-1
- Analyst: MS

Analyte Concentration (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>24.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.60</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-3</td>
<td>8.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>45.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>18.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>7.66</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-11</td>
<td>9.92</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td></td>
<td>0.994</td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td></td>
<td>0.856</td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>31.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>16.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>44.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>5.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>20.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>12.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td></td>
<td>0.424</td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>3.12</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>2.32</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>4.52</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>25.9</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td></td>
<td>0.424</td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td></td>
<td>0.538</td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>24.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td></td>
<td>0.394</td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td></td>
<td>0.410</td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td></td>
<td>0.397</td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>3.04</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td></td>
<td>0.415</td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td></td>
<td>0.409</td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>1.56</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>4.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>2.03</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>4.33</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
- PCB-1 24.9
- PCB-2 1.60
- PCB-3 8.05
- PCB-4 45.6
- PCB-5 102
- PCB-6 18.5
- PCB-7 7.66
- PCB-11 9.92
- PCB-12/13 ND 0.994
- PCB-15 20.1
- PCB-16/32 31.1
- PCB-17 16.4
- PCB-18 44.3
- PCB-19 5.60
- PCB-20/21/33 20.4
- PCB-22 12.1
- PCB-23 ND 0.424
- PCB-24/27 3.12
- PCB-25 2.32
- PCB-26 4.52
- PCB-28 25.9
- PCB-29 ND 0.424
- PCB-30 ND 0.538
- PCB-31 24.3
- PCB-34 ND 0.394
- PCB-35 ND 0.410
- PCB-36 ND 0.397
- PCB-37 3.04
- PCB-38 ND 0.415
- PCB-39 ND 0.409
- PCB-40 1.56
- PCB-41/64/71/72 4.91
- PCB-42/59 2.03
- PCB-43/49 4.33

DL - Sample specific estimated detection limit
- PCB-1 0.994
- PCB-2 0.856
- PCB-3 0.424
- PCB-4 0.394
- PCB-5 0.410
- PCB-6 0.397
- PCB-7 0.994
- PCB-11 0.856
- PCB-12/13 0.424
- PCB-15 0.856
- PCB-16/32 0.424
- PCB-17 0.856
- PCB-18 0.424
- PCB-19 0.856
- PCB-20/21/33 0.424
- PCB-22 0.856
- PCB-23 0.424
- PCB-24/27 0.856
- PCB-25 0.424
- PCB-26 0.424
- PCB-28 0.856
- PCB-29 0.424
- PCB-30 0.856
- PCB-31 0.424
- PCB-34 0.856
- PCB-35 0.424
- PCB-36 0.856
- PCB-37 0.424
- PCB-38 0.856
- PCB-39 0.424

Work Order 1600387
Page 28 of 37
Sample ID: GW_147

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 8:10

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600387-05
- **Date Received:** 08-Apr-2016 9:26
- **QC Batch:** B6D0088
- **Date Extracted:** 20-Apr-2016 8:30
- **Date Analyzed:** 21-Apr-16 01:36
- **Column:** ZB-1
- **Analyst:** MS

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.51</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>0.733</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>0.611</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>0.837</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.15</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.851</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.942</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte Concentrations (continued)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>0.753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>0.580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>1.16</td>
<td></td>
<td>B, J</td>
<td></td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>0.939</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>ND</td>
<td>0.591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>0.787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>ND</td>
<td>0.551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>0.762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>ND</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>0.736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>0.934</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-154</td>
<td>ND</td>
<td>0.966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>0.718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>ND</td>
<td>0.480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>ND</td>
<td>0.498</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>ND</td>
<td>0.493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>ND</td>
<td>0.481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>0.439</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>0.589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>ND</td>
<td>0.538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>ND</td>
<td>0.520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>ND</td>
<td>0.559</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>0.685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>ND</td>
<td>0.587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>ND</td>
<td>0.580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>0.597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.436</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: GW_147

Client Data
- Name: Walla Walla Basin Watershed Council
- Project: Still Pond
- Date Collected: 07-Apr-2016 8:10

Sample Data
- Matrix: Aqueous
- Sample Size: 1.01 L

Laboratory Data
- Lab Sample: 1600387-05
- QC Batch: B6D0088
- Date Analyzed: 21-Apr-2016 01:36
- Date Received: 08-Apr-2016 9:26
- Date Extracted: 20-Apr-2016 8:30
- Column: ZB-1
- Analyst: MS

Analyte Concentration (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.408</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.842</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>34.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>39.3</td>
<td>39.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>5.43</td>
<td>5.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>3.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.685</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyte Concentration (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octaCB</td>
<td>0.842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total nonaCB</td>
<td>ND</td>
<td>0.535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DecaCB</td>
<td>ND</td>
<td>0.396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PCB</td>
<td>479</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- DL - Sample specific estimated detection limit
- EMPC - Estimated maximum possible concentration
- LCL-UCL - Lower control limit - upper control limit
- See individual congeners for qualifiers.
Sample ID: GW_147

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 07-Apr-2016 8:10

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600387-05
- **QC Batch:** B6D0088
- **Date Analyzed:** 21-Apr-2016 01:36
- **Column:** ZB-1
- **Analyst:** MS
- **Date Received:** 08-Apr-2016 9:26
- **Date Extracted:** 20-Apr-2016 8:30

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>42.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>47.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>51.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>64.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>56.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>55.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>74.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>63.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>84.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>62.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>64.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>52.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>75.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>80.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>75.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>78.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>77.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>84.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>79.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>63.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>93.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>88.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>84.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>85.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>95.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>94.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>83.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>83.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>81.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>70.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>77.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>77.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>81.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>81.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>77.3</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
- See individual congeners for qualifiers.
DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.
D Dilution
E The associated compound concentration exceeded the calibration range of
the instrument.
H Recovery and/or RPD was outside laboratory acceptance limits.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
* See Cover Letter
Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and
reported with 99% confidence that the analyte concentration is greater
than zero in the matrix tested.
EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit – concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.
CERTIFICATIONS

<table>
<thead>
<tr>
<th>Accrediting Authority</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Department of Health – ELAP</td>
<td>2892</td>
</tr>
<tr>
<td>DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005</td>
<td>3091.01</td>
</tr>
<tr>
<td>Florida Department of Health</td>
<td>E87777</td>
</tr>
<tr>
<td>Hawaii Department of Health</td>
<td>N/A</td>
</tr>
<tr>
<td>Louisiana Department of Environmental Quality</td>
<td>01977</td>
</tr>
<tr>
<td>Maine Department of Health</td>
<td>2014022</td>
</tr>
<tr>
<td>Nevada Division of Environmental Protection</td>
<td>CA004132015-1</td>
</tr>
<tr>
<td>New Jersey Department of Environmental Protection</td>
<td>CA003</td>
</tr>
<tr>
<td>New York Department of Health</td>
<td>11411</td>
</tr>
<tr>
<td>Oregon Laboratory Accreditation Program</td>
<td>4042-004</td>
</tr>
<tr>
<td>Pennsylvania Department of Environmental Protection</td>
<td>012</td>
</tr>
<tr>
<td>South Carolina Department of Health</td>
<td>87002001</td>
</tr>
<tr>
<td>Texas Commission on Environmental Quality</td>
<td>T104704189-15-6</td>
</tr>
<tr>
<td>Virginia Department of General Services</td>
<td>7923</td>
</tr>
<tr>
<td>Washington Department of Ecology</td>
<td>C584</td>
</tr>
<tr>
<td>Wisconsin Department of Natural Resources</td>
<td>998036160</td>
</tr>
</tbody>
</table>

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request
NELAP Accredited Test Methods

MATRIX: Air

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Polychlorinated p-Dioxins & Polychlorinated Dibenzofurans</td>
<td>EPA 23</td>
</tr>
</tbody>
</table>

MATRIX: Biological Tissue

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>

MATRIX: Drinking Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
</tbody>
</table>

MATRIX: Non-Potable Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Dioxin by GC/HRMS</td>
<td>EPA 613</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>

MATRIX: Solids

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Analysis</td>
<td>Method Code</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Dilution GC/HRMS</td>
<td></td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>
Chain of Custody Record

Project Information
- **Project ID:** Stillier Pond
- **P.O. #:**
- **Sampler:** Steven Patten

Invoice to:
- **Name:** Chris Sheets
- **Company:** WWBWC
- **Address:** 810 S. Main St
- **City:** Milton-Freewater
- **State:** OR
- **Zip:** 97862
- **Ph#:** 541-938-2170
- **Fax #:** 541-938-2170

Relinquished by:
- **Date:** 4-7-16
- **Time:** 11:32
- **Received by:** UPS
- **Date:** 4-7-16

Details
- **Ship To:** Vista Analytical Laboratory
 - **Address:** 1104 Windfield Way
 - **City:** El Dorado Hills, CA
 - **State:** CA
 - **Zip:** 95762
 - **Phone:** (916) 673-1520
 - **Fax:** (916) 673-0106

Method of Shipment:
- **UPS Next Day Air**

Sample Information
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Location/Sample Description</th>
<th>Quantity</th>
<th>Type</th>
<th>Matrix 1</th>
<th>Matrix 2</th>
<th>Matrix 3</th>
<th>Matrix 4</th>
<th>Matrix 5</th>
<th>Matrix 6</th>
<th>Matrix 7</th>
<th>Matrix 8</th>
<th>Matrix 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Creek</td>
<td>4-7-16</td>
<td>9:25</td>
<td>Stillier Pond</td>
<td>2L</td>
<td>A</td>
<td>AQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW_136</td>
<td>4-7-16</td>
<td>9:35</td>
<td>Stillier Pond</td>
<td>2L</td>
<td>A</td>
<td>AQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW_145</td>
<td>4-7-16</td>
<td>9:00</td>
<td>Stillier Pond</td>
<td>2L</td>
<td>A</td>
<td>AQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW_146</td>
<td>4-7-16</td>
<td>9:20</td>
<td>Stillier Pond</td>
<td>2L</td>
<td>A</td>
<td>AQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW_147</td>
<td>4-7-16</td>
<td>8:10</td>
<td>Stillier Pond</td>
<td>2L</td>
<td>A</td>
<td>AQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Instructions/Comments:

Documentation and Results To:
- **Name:** Steven Patten
- **Company:** WWBWC
- **Address:** 810 S. Main St
- **City:** Milton-Freewater
- **State:** OR
- **Zip:** 97862
- **Phone:** 541-938-2170
- **Fax:** 541-938-2170
- **Email:** steven.patten@wwbwc.org

Matrix Types:
- DW = Drinking Water
- EF = Effluent
- PP = Pulp/Paper
- SD = Sediment
- SL = Sludge
- SO = Soil
- WW = Wastewater
- B = Blood/Serum

Note: Bottle Preservative Type: □ T = Thiosulfate, □ O = Other
SAMPLE LOG-IN CHECKLIST

Vista Project #: 1600387
TAT: Std

<table>
<thead>
<tr>
<th>Samples Arrival:</th>
<th>Date/Time: 04/03/16 09:27</th>
<th>Initials: YSB</th>
<th>Location: WR-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf/Rack: NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logged In:</th>
<th>Date/Time: 04/03/16 13:17</th>
<th>Initials: YSB</th>
<th>Location: WR-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf/Rack: A4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delivered By:</th>
<th>FedEx</th>
<th>UPS</th>
<th>On Trac</th>
<th>DHL</th>
<th>Hand Delivered</th>
<th>Other</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Preservation:</th>
<th>Ice</th>
<th>Blue Ice</th>
<th>Dry Ice</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Temp °C:</th>
<th>6.4 (uncorrected)</th>
<th>Time: 09:27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp °C:</td>
<td>-0.9 (corrected)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermometer ID:</th>
<th>IR-2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Adequate Sample Volume Received?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding Time Acceptable?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Container(s) Intact?</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Custody Seals Intact?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Documentation Present?</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbill</td>
<td>Trk # 1E02E3F70117233161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Container Intact?</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Custody Seals Intact?</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of Custody / Sample Documentation Present?</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC Anomaly/Sample Acceptance Form completed?</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If Chlorinated or Drinking Water Samples, Acceptable Preservation? √

<table>
<thead>
<tr>
<th>Na₂S₂O₃ Preservation Documented?</th>
<th>COC</th>
<th>Sample Container</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipping Container</td>
<td>Vista</td>
<td>Client</td>
<td>Retain</td>
</tr>
</tbody>
</table>

Comments:
May 24, 2016

Mr. Steve Patten
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

RE: 16-09951 - Aquifer Recharge Water 2016

Dear Mr. Steve Patten,

Your project: Aquifer Recharge Water 2016, was received on Wednesday May 04, 2016.

All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone us at 800 755-9295.

Respectfully

Patrick Miller, MS
QA Officer

Enclosures: Data Report
<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>1.71</td>
<td>0.10</td>
<td></td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>RHF</td>
<td>TURB_160504</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>9.9</td>
<td>5.0</td>
<td>0.015</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>a</td>
<td>MMH</td>
<td>200.7_160501A</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>7.63E-06</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>RHF</td>
<td>245.1_160509</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>4.2</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH</td>
<td>I160504A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.13</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH</td>
<td>I160504A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>3.0</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>MMH</td>
<td>I160504A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>46.3</td>
<td>5.00</td>
<td></td>
<td>mg CaCO₃/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>ANP</td>
<td>310.2_160505</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.00</td>
<td></td>
<td>mg CaCO₃/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>ANP</td>
<td>310.2_160505</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-1.78</td>
<td></td>
<td></td>
<td>Si</td>
<td>1.0</td>
<td>SM203</td>
<td>a</td>
<td>mvp</td>
<td>cor_160512</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>10</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1.0</td>
<td>SM1210 B</td>
<td>a</td>
<td>RHF</td>
<td>COLOR_160504</td>
<td>pH: 7.5</td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>4</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>RHF</td>
<td>ODOR_160504</td>
<td>Temperature: 41.5</td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>98</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>MMH</td>
<td>TDS_160506</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.28H5</td>
<td></td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500 H+ B</td>
<td>a</td>
<td>RHF</td>
<td>PH_160504</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>0.77</td>
<td>0.010</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-NOS F</td>
<td>a</td>
<td>ANP</td>
<td>NO3N2_160504</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.11</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>ANP</td>
<td>OPHOS_160504</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>0.037</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5540 C</td>
<td>a</td>
<td>MJ</td>
<td>AMTESS40_160504</td>
<td>Analyzed by Amtest</td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.15</td>
<td>0.050</td>
<td>0.0013</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>MJ</td>
<td>MJ_160504A</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.0049</td>
<td>0.001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>MVP</td>
<td>MVP_160501A</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.0002 J</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP</td>
<td>MVP_160501A</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.013</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP</td>
<td>MVP_160501A</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP</td>
<td>MVP_160501A</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP</td>
<td>MVP_160501A</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.001 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP</td>
<td>MVP_160501A</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP</td>
<td>MVP_160501A</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>MVP</td>
<td>MVP_160501A</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor

If you have any questions concerning this report contact us at the above phone number.
Data Report

Reference Number: 16-09951
Report Date: 5/24/16

Sample Description: Stiller Pond - GW_136
Lab Number: 22667
Sample Comment:

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>11.2</td>
<td>0.10</td>
<td>NTU</td>
<td>1</td>
<td>a</td>
<td>5/16</td>
<td>RHF</td>
<td>TURB_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>27.4</td>
<td>0.5</td>
<td>0.015</td>
<td>mg/L</td>
<td>1</td>
<td>a</td>
<td>5/16</td>
<td>MMH</td>
<td>200.7_160504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>7.63E-06</td>
<td>mg/L</td>
<td>1</td>
<td>a</td>
<td>5/9</td>
<td>RHF</td>
<td>245.1_160509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>2.9</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1</td>
<td>a</td>
<td>5/9</td>
<td>MMH</td>
<td>1160504A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.19</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1</td>
<td>a</td>
<td>5/9</td>
<td>MMH</td>
<td>1160504A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>4.4</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1</td>
<td>a</td>
<td>5/9</td>
<td>MMH</td>
<td>1160504A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>116</td>
<td>5.00</td>
<td>mg CaCO3/L</td>
<td>1</td>
<td>a</td>
<td>5/9</td>
<td>ANP</td>
<td>310.2_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.00</td>
<td>mg CaCO3/L</td>
<td>1</td>
<td>a</td>
<td>5/9</td>
<td>ANP</td>
<td>310.2_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.46</td>
<td>1.0</td>
<td>SI</td>
<td>1</td>
<td>a</td>
<td>5/12</td>
<td>mhp</td>
<td>cor_160512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>8</td>
<td>5</td>
<td>Color Units</td>
<td>1</td>
<td>a</td>
<td>5/4</td>
<td>RHF</td>
<td>COLOR_160504</td>
<td>pH: 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>1</td>
<td>1</td>
<td>TON</td>
<td>1</td>
<td>a</td>
<td>5/5</td>
<td>RHF</td>
<td>ODOR_160504</td>
<td>Temperature: 41.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>157</td>
<td>10</td>
<td>mg/L</td>
<td>1</td>
<td>a</td>
<td>5/11</td>
<td>MMH</td>
<td>TDS_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.77 H5</td>
<td>1</td>
<td>pH Units</td>
<td>1</td>
<td>a</td>
<td>5/4</td>
<td>RHF</td>
<td>PH_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>0.28</td>
<td>0.010</td>
<td>0.002</td>
<td>mg/L</td>
<td>1</td>
<td>a</td>
<td>5/4</td>
<td>ANP</td>
<td>NO3_160504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.20</td>
<td>0.005</td>
<td>0.0022</td>
<td>mg/L</td>
<td>1</td>
<td>a</td>
<td>5/4</td>
<td>ANP</td>
<td>OPHOS_160504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1</td>
<td>a</td>
<td>5/21</td>
<td>MJ</td>
<td>AMTESS_160502</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **NA** = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- **PQL** = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **DF** = Dilution Factor
- **NOTE:** Analysis performed by Steven Patten on 5/16/16 at 10:00 am.

Notes:

- **NA** = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- **PQL** = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **D.F.** - Dilution Factor
Data Report

Sample Description: Stiller Pond - GW_145
Lab Number: 22668
Sample Comment:
Sample Date: 5/3/16 10:50 am
Collected By: Steven Patten

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>8.99</td>
<td>0.10</td>
<td></td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>5/16</td>
<td>RHF</td>
<td>TURB_160504</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>44.0</td>
<td>0.5</td>
<td>0.015</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>a</td>
<td>5/16</td>
<td>MMH</td>
<td>200_7_160510A</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>7.63E-06</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>5/16</td>
<td>RHF</td>
<td>245_1_160509</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>19.9</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>5/16</td>
<td>MMH</td>
<td>I160504A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.22</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>5/16</td>
<td>MMH</td>
<td>I160504A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>29.4</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>5/16</td>
<td>MMH</td>
<td>I160504A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>194</td>
<td>5.00</td>
<td></td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>5/16</td>
<td>ANP</td>
<td>310.2_160505</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.00</td>
<td></td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>5/16</td>
<td>ANP</td>
<td>310.2_160505</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>10</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1.0</td>
<td>SM1210 B</td>
<td>a</td>
<td>5/16</td>
<td>RHF</td>
<td>COLOR_160504</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TOM</td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>5/16</td>
<td>RHF</td>
<td>ODOR_160504</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>322</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>5/11</td>
<td>MMH</td>
<td>TDS_160506</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.39</td>
<td>H5</td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>5/4</td>
<td>RHF</td>
<td>PH_160504</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>3.07</td>
<td>0.010</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-N03 F</td>
<td>a</td>
<td>5/4</td>
<td>ANP</td>
<td>NO3N02_160504</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.14</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>5/4</td>
<td>ANP</td>
<td>OPHOS_160504</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5540 C</td>
<td>a</td>
<td>5/21</td>
<td>MJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.33</td>
<td>0.050</td>
<td>0.0013</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.7_160508</td>
<td></td>
</tr>
<tr>
<td>7440-96-5</td>
<td>MANGANESE</td>
<td>0.0149</td>
<td>0.001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.7_160508</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.002</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.8_160510A</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.061</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.8_160510A</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.8_160510A</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.0004 J</td>
<td>0.0005</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.8_160510A</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0022</td>
<td>0.0002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.8_160510A</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.00028 J</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.8_160510A</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.8_160510A</td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.8_160510A</td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.002 J</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>5/10</td>
<td>MMH</td>
<td>200.8_160510A</td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1.0 H1</td>
<td>1</td>
<td></td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223</td>
<td>b</td>
<td>5/9</td>
<td>CLH</td>
<td>qt_160504</td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td><1.0 H1</td>
<td>1</td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223</td>
<td>b</td>
<td>5/9</td>
<td>CLH</td>
<td>qt_160504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.181</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>5/9</td>
<td>ANP</td>
<td>TPHOS_160505</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- DF = Dilution Factor

Sample Date: 5/3/16 10:50 am
Collected By: Steven Patten
Data Report

Sample Description:
- **Sample Date:** 5/3/16 9:15 am
- **Lab Number:** 22670
- **Sample Comment:**

Table of Results

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed by</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>3.59</td>
<td>0.10</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>RHF</td>
<td>TURB_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>42.2</td>
<td>0.5</td>
<td>0.015</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>RHF</td>
<td>290.7_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>7.63E-06</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>RHF</td>
<td>245.1_160509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>22.1</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>RHF</td>
<td>160504A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>0.26</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>RHF</td>
<td>160504A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>30.0</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>RHF</td>
<td>160504A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>209</td>
<td>5.00</td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>ANP</td>
<td>310.2_160505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.00</td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>ANP</td>
<td>310.2_160505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIvity</td>
<td>-0.35</td>
<td></td>
<td></td>
<td>SI</td>
<td>5/12</td>
<td>msp</td>
<td>cox_160512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>10</td>
<td>5</td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>RHF</td>
<td>COLOR_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>RHF</td>
<td>ODOR_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>361</td>
<td>10</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>5/11</td>
<td>TDS_160506</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>7.47</td>
<td>H5</td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+B</td>
<td>RHF</td>
<td>PH_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>6.01</td>
<td>0.010</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-N03 F</td>
<td>ANP</td>
<td>NO3_160504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.12</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>ANP</td>
<td>OPHOS_160504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5540 C</td>
<td>5/21</td>
<td>MJ AMTE5540_160502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.13</td>
<td>0.050</td>
<td>0.0013</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.0038</td>
<td>0.001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.002</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.065</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIum</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0018</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.00017</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.00026</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0016</td>
<td>0.00025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>5/10</td>
<td>MHP_160510A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1.0 H1</td>
<td>1</td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM2223 B.2</td>
<td>b</td>
<td>CLH qt_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>9.2 H1</td>
<td>1</td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM2223 B.2</td>
<td>b</td>
<td>CLH qt_160504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.125</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>ANP</td>
<td>TPHOS_160505</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **ND** = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- **PQL** = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **DF** = Dilution Factor

Sample Date: 5/24/16
Report Date: 5/24/16
Reference Number: 16-09951
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
<th>Method</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICARBONATE</td>
<td>mg CaCO3/L</td>
<td>5.00</td>
<td></td>
<td>5/5/16</td>
<td>ANP</td>
</tr>
<tr>
<td>CARBONATE</td>
<td>mg CaCO3/L</td>
<td>5.00</td>
<td></td>
<td>5/5/16</td>
<td>ANP</td>
</tr>
<tr>
<td>CORROSIVITY</td>
<td>SI</td>
<td>-0.72</td>
<td></td>
<td>5/12/16</td>
<td>mvp</td>
</tr>
<tr>
<td>COLOR</td>
<td>Color Units</td>
<td>5</td>
<td></td>
<td>5/4/16</td>
<td>RHF</td>
</tr>
<tr>
<td>ODOR</td>
<td>TON</td>
<td>1</td>
<td></td>
<td>5/4/16</td>
<td>RHF</td>
</tr>
<tr>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>mg/L</td>
<td>270</td>
<td></td>
<td>5/11/16</td>
<td>MMH</td>
</tr>
<tr>
<td>HYDROGEN ION (pH)</td>
<td>pH</td>
<td>7.36</td>
<td>H5</td>
<td>5/4/16</td>
<td>RHF</td>
</tr>
<tr>
<td>NITRATE-N</td>
<td>mg/L</td>
<td>4.39</td>
<td></td>
<td>5/4/16</td>
<td>ANP</td>
</tr>
<tr>
<td>ORTHO-PHOSPHATE</td>
<td>mg/L</td>
<td>0.19</td>
<td></td>
<td>5/4/16</td>
<td>ANP</td>
</tr>
<tr>
<td>SURFACTANTS</td>
<td>mg/L</td>
<td>ND</td>
<td></td>
<td>5/21/16</td>
<td>AMTE</td>
</tr>
<tr>
<td>IRON</td>
<td>mg/L</td>
<td>0.050</td>
<td>0.0013</td>
<td>5/10/16</td>
<td>MMH</td>
</tr>
<tr>
<td>MANGANESE</td>
<td>mg/L</td>
<td>ND</td>
<td>0.0001</td>
<td>5/10/16</td>
<td>MMH</td>
</tr>
<tr>
<td>ARSENIC</td>
<td>mg/L</td>
<td>0.0035</td>
<td>8.11E-05</td>
<td>5/10/16</td>
<td>MVP</td>
</tr>
<tr>
<td>BARIUM</td>
<td>mg/L</td>
<td>0.035</td>
<td>0.00014</td>
<td>5/10/16</td>
<td>MVP</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>mg/L</td>
<td>ND</td>
<td>0.0025</td>
<td>8.11E-05</td>
<td>5/10/16</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>mg/L</td>
<td>0.0002</td>
<td>0.00011</td>
<td>5/10/16</td>
<td>MVP</td>
</tr>
<tr>
<td>COPPER</td>
<td>mg/L</td>
<td>0.0015</td>
<td>8.63E-05</td>
<td>5/10/16</td>
<td>MVP</td>
</tr>
<tr>
<td>LEAD</td>
<td>mg/L</td>
<td>ND</td>
<td>0.0005</td>
<td>0.0012</td>
<td>5/10/16</td>
</tr>
<tr>
<td>SELENIUM</td>
<td>mg/L</td>
<td>0.0004</td>
<td>0.00022</td>
<td>5/10/16</td>
<td>MVP</td>
</tr>
<tr>
<td>SILVER</td>
<td>mg/L</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>5/10/16</td>
</tr>
<tr>
<td>ZINC</td>
<td>mg/L</td>
<td>0.0016</td>
<td>0.00047</td>
<td>5/10/16</td>
<td>MVP</td>
</tr>
<tr>
<td>E. Coli</td>
<td>MPN/100mL</td>
<td><1.0</td>
<td>1</td>
<td>5/5/16</td>
<td>CLH</td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>MPN/100mL</td>
<td><1.0</td>
<td>1</td>
<td>5/5/16</td>
<td>CLH</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>mg/L</td>
<td>0.266</td>
<td>0.050</td>
<td>0.003</td>
<td>5/5/16</td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

Form: cRslt_2.rpt
DATA REPORT

Reference Number: 16-09951
Project: Aquifer Recharge Water 2016

Report Date: 5/24/16
Date Analyzed: 5/5/16
Analyst: CO

Batch: 8081B
Approved By: pdm.rjk

Authorized by:
Patrick Miller, MS
QA Officer

Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.035</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 22670
Field ID: Stiller Pond
Sample Description: GW-147
Matrix: Water
Sample Date: 5/3/16
Extraction Date: 5/5/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-2</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICamba</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 22670
Field ID: Stiller Pond
Sample Description: GW-147
Matrix: Water
Sample Date: 5/3/16
Extraction Date: 5/10/16
Extraction Method: 5030B

Report Date: 5/24/16
Date Analyzed: 5/10/16
Analytical Method: 8260C
Batch: 8260W_160510
Approved By: pdm.rjk

CAS Compound | RESULT | Flag | UNITS | Lab QL | Permit QL | MDL | D.F. | Lab | COMMENT
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M, P - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1654-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLENENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLtoluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>Screening Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFluoromethane</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR 97862

- **Lab Number:** 22669
- **Field ID:** Stiller Pond
- **Sample Description:** GW_146
- **Matrix:** Water
- **Sample Date:** 5/3/16
- **Extraction Date:** 5/5/16
- **Extraction Method:** 3535

Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
MDL = Method Detection Limit is the lowest level that can be quantitatively detected.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. = Dilution Factor.

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.035</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 22669
Field ID: Stiller Pond
Sample Description: GW_146
Matrix: Water
Sample Date: 5/3/16
Extraction Date: 5/5/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICamba</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>µg/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLENENBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>Screening Only</td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR 97862

Lab Number: 22668
Field ID: Stiller Pond
Sample Description: GW_145
Matrix: Water
Sample Date: 5/3/16
Extraction Date: 5/5/16
Extraction Method: 3535

Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.2</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.035</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 22668
Field ID: Stiller Pond
Sample Description: GW_145
Matrix: Water
Sample Date: 5/3/16
Extraction Date: 5/5/16
Extraction Method: 3510C

Reference Number: 16-09951
Project: Aquifer Recharge Water 2016

Report Date: 5/24/16
Date Analyzed: 5/6/16
Analyst: KAH
Analytical Method: 8151A
Batch: 8151W_160505
Approved By: pdm,rjk

Authorized by: Patrick Miller, MS QA Officer

CAS Compound
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-4</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2, 4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2, 4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2, 4, 5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2, 4, 5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-9</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3, 5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street, Milton-Freewater, OR 97862

Lab Number: 22668
Field ID: Stiller Pond
Sample Description: GW_145
Matrix: Water
Sample Date: 5/3/16
Extraction Date: 5/10/16
Extraction Method: 5030B

Reference Number: 16-09951
Project: Aquifer Recharge Water 2016

Report Date: 5/24/16
Date Analyzed: 5/10/16
Analyst: HY
Batch: 8260W_160510
Approved By: pdm, rjk

### CAS Number	Compound	RESULT	Flag	UNITS	Lab QL	Permit QL	MDL	D.F.	Lab QL	COMMENT
75-34-3 | 1,1 - DICHLOROETHANE | ND | ug/L | 0.4 | 0.11 | 1.00 |
75-35-4 | 1,1 - DICHLOROETHYLENE | ND | ug/L | 0.4 | 0.13 | 1.00 |
563-58-6 | 1,1 - DICHLOROPROPENE | ND | ug/L | 0.4 | 0.13 | 1.00 |
71-55-6 | 1,1,1 - TRICHLOROETHANE | ND | ug/L | 0.1 | 0.16 | 1.00 |
630-20-6 | 1,1,1,2 - TETRACHLOROETHANE | ND | ug/L | 0.4 | 0.11 | 1.00 |
79-00-5 | 1,1,2 - TRICHLOROETHANE | ND | ug/L | 0.4 | 0.11 | 1.00 |
79-34-5 | 1,1,2,2 - TETRACHLOROETHANE | ND | ug/L | 0.4 | 0.15 | 1.00 |
106-93-4 | 1,2 - DIBROMOETHANE (EDB) | ND | ug/L | 0.4 | 0.15 | 1.00 |
95-50-1 | 1,2 - DICHLOOROBENZENE (ortho) | ND | ug/L | 0.4 | 0.08 | 1.00 |
107-06-2 | 1,2 - Dichloroethane | ND | ug/L | 0.4 | 0.11 | 1.00 |
78-87-5 | 1,2 - DICHLOROPROPANE | ND | ug/L | 0.4 | 0.11 | 1.00 |
87-61-6 | 1,2,3 - TRICHLOROBENZENE | ND | ug/L | 0.4 | 0.08 | 1.00 |
96-18-4 | 1,2,3 - TRICHLOROPROPANE | ND | ug/L | 0.4 | 0.09 | 1.00 |
120-82-1 | 1,2,4 - TRICHLOROBENZENE | ND | ug/L | 0.4 | 0.13 | 1.00 |
95-63-6 | 1,2,4 - TRIMETHYLBENZENE | ND | ug/L | 0.4 | 0.09 | 1.00 |
96-12-8 | 1,2,4 - DIBROMO-3-CHLOROPROPANE | ND | ug/L | 1.0 | 0.17 | 1.00 |
541-73-1 | 1,3 - DICHLOOROBENZENE (meta) | ND | ug/L | 0.4 | 0.07 | 1.00 |
142-29-9 | 1,3 - DICHLOROPROPANE | ND | ug/L | 0.4 | 0.09 | 1.00 |
108-67-8 | 1,3,5 - TRIMETHYLBENZENE | ND | ug/L | 0.4 | 0.09 | 1.00 |
106-46-7 | 1,4 - DICHLOOROBENZENE (para) | ND | ug/L | 0.4 | 0.06 | 1.00 |
594-20-7 | 2,2 - DICHLOROPROPANE | ND | ug/L | 0.4 | 0.22 | 1.00 |
71-43-2 | BENZENE | ND | ug/L | 0.4 | 0.16 | 1.00 |
108-86-1 | BROMOBENZENE | ND | ug/L | 0.4 | 0.09 | 1.00 |
74-97-5 | BROMOCHLOROMETHANE | ND | ug/L | 0.4 | 0.09 | 1.00 |
75-27-4 | BROMODICHLOROMETHANE | ND | ug/L | 0.4 | 0.13 | 1.00 |
75-25-2 | BROMOFORM | ND | ug/L | 0.4 | 0.2 | 1.00 |

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLORMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOORETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLOORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLENEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPELYTLTUOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOORETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
D.F. = Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Reference Number: 16-09951
Project: Aquifer Recharge Water 2016

Lab Number: 22667
Field ID: Stiller Pond
Sample Description: GW_136
Matrix: Water
Sample Date: 5/3/16
Extraction Date: 5/5/16
Extraction Method: 3535

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.035</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c668.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR 97862

Lab Number: 22667
Sample Description: GW_136
Matrix: Water
Sample Date: 5/3/16
Extraction Date: 5/5/16
Extraction Method: 3510C

Report Date: 5/24/16
Date Analyzed: 5/6/16
** Analyst:** KAH
Analytical Method: 8151A
Batch: 8151W_160505
Approved By: pdm, rjk

Authorized by:
Patrick Miller, MSQA Officer

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-5</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
2. ND - indicates the compound was not detected above the PQL or MDL.
3. Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
4. Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
5. D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 22667
Field ID: Stiller Pond
Sample Description: GW_136
Matrix: Water
Sample Date: 5/3/16
Extraction Date: 5/10/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EDB)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-81-6</td>
<td>2,2 - DICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - DICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-29-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- MDL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.

D.F. - Dilution Factor.

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M.P. - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLENENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number:</th>
<th>22666</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field ID:</td>
<td>Stiller Pond</td>
</tr>
<tr>
<td>Sample Description:</td>
<td>Mill Creek</td>
</tr>
<tr>
<td>Matrix:</td>
<td>Surface Water</td>
</tr>
<tr>
<td>Sample Date:</td>
<td>5/3/16</td>
</tr>
<tr>
<td>Extraction Date:</td>
<td>5/5/16</td>
</tr>
<tr>
<td>Extraction Method:</td>
<td>3535</td>
</tr>
</tbody>
</table>

Lab

Reference Number: 16-09951
Project: Aquifer Recharge Water 2016

Report Date: 5/24/16
Date Analyzed: 5/5/16
Analyst: CO
Analytical Method: 8081B
Batch: 8081B_160505
Approved By: pdm,rjk

Authorized by:

Patrick Miller, MS
QA Officer

Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.035</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.015</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPoxide "B"</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>uG/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td>uG/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
Experimental Details

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City: Milton-Freewater, OR 97862

Lab Number: 22666
Field ID: Stiller Pond
Sample Description: Mill Creek
Matrix: Surface Water
Sample Date: 5/3/16
Extraction Date: 5/5/16
Extraction Method: 3510C

Data Report

Results

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- **Flags** are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- **ND** - indicates the compound was not detected above the PQL or MDL.
- **Lab QL** = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **Permit QL** = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- **D.F.** - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street, Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab QL</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-56-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2 - DIBROMOETHANE (EBD)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>Lab QL</th>
<th>Permit QL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLOORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOXYLOLTOLEUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-6</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- Lab QL = Laboratory Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- Permit QL = Quantitation Limit required by permit (listed in Appendix A) or other regulatory requirement.
- D.F. - Dilution Factor.
- Screening Only
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Calibration Check

Reference Number: 16-09951
Report Date: 05/24/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160510A</td>
<td>2 CALCIUM</td>
<td>10.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>95</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 IRON</td>
<td>1.02</td>
<td>mg/L</td>
<td>200.7</td>
<td>102</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 MANGANESE</td>
<td>1.03</td>
<td>mg/L</td>
<td>200.7</td>
<td>103</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160510AW</td>
<td>0 ARSENIC</td>
<td>0.00102</td>
<td>mg/L</td>
<td>200.8</td>
<td>102</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 IRON</td>
<td>0.00106</td>
<td>mg/L</td>
<td>200.8</td>
<td>106</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CADMIUM</td>
<td>0.00104</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHROMIUM</td>
<td>0.00096</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 COPPER</td>
<td>0.0011</td>
<td>mg/L</td>
<td>200.8</td>
<td>110</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 LEAD</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SELENIUM</td>
<td>0.00096</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SILVER</td>
<td>0.00102</td>
<td>mg/L</td>
<td>200.8</td>
<td>102</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ZINC</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160509</td>
<td>0 MERCURY</td>
<td>0.00200</td>
<td>mg/L</td>
<td>245.1</td>
<td>100</td>
<td>95-105</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 MERCURY</td>
<td>0.000198</td>
<td>mg/L</td>
<td>245.1</td>
<td>99</td>
<td>95-105</td>
<td>CAL MRL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160504A</td>
<td>0 CHLORIDE</td>
<td>1.1</td>
<td>mg/L</td>
<td>300.0</td>
<td>110</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 FLUORIDE</td>
<td>1.03</td>
<td>mg/L</td>
<td>300.0</td>
<td>103</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 SULFATE</td>
<td>2</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160504</td>
<td>0 ORTHO-PHOSPHATE</td>
<td>0.98</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>98</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH_160504</td>
<td>0 HYDROGEN ION (pH)</td>
<td>7.99</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 HYDROGEN ION (pH)</td>
<td>8.01</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160505</td>
<td>0 TOTAL PHOSPHORUS</td>
<td>0.110</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>110</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160504</td>
<td>0 TURBIDITY</td>
<td>9.86</td>
<td>NTU</td>
<td>180.1</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

<table>
<thead>
<tr>
<th>Reference Number: 16-09951</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Date: 05/24/16</td>
</tr>
</tbody>
</table>

FORM: QCIndependent3.rpt

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160510A</td>
<td>CALCIUM</td>
<td>12.20</td>
<td>13</td>
<td>mg/L</td>
<td>200.7</td>
<td>94</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>0.48</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>96</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANES</td>
<td>0.53</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>106</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160510A</td>
<td>ARSENIC</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.028</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>112</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.013</td>
<td>0.0125</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160509</td>
<td>MERCURY</td>
<td>0.00163</td>
<td>0.00167</td>
<td>mg/L</td>
<td>245.1</td>
<td>98</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160505</td>
<td>2,4 - D</td>
<td>1.9</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>95</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>7.9</td>
<td>8</td>
<td>ug/L</td>
<td>8151A</td>
<td>99</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>110</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>0.89</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>89</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>0.84</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>84</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>2.0</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>13.4</td>
<td>13</td>
<td>ug/L</td>
<td>8151A</td>
<td>103</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>110</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>3.1</td>
<td>3</td>
<td>ug/L</td>
<td>8151A</td>
<td>103</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>1.6</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>80</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>1.0</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>0.84</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>84</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>0.27</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>27</td>
<td>LR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICLOPYR</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>110</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>1,1 - DICHLOROETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation: % Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limit criteria are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 16-09951
Report Date: 05/24/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160510</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROPROPENE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>3.6</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>90</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE (ortho)</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2 - DICHLOROPROPANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>3.5</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>88</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4 - TRICHLOROPROPANE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3 - DICHLOROPROPANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 - DICHLOROPROPANE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENZENE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>103</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOBENZENE</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOCHLOROMETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMODICHLOROMETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOFORM</td>
<td>3.6</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>90</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROMOMETHANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARBON TETRACHLORIDE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>103</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROBENZENE</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROETHANE</td>
<td>4.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>120</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROFORM</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLOROMETHANE</td>
<td>3.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>80</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Reference Number: 16-09951
Report Date: 05/24/16

Laboratory Fortified Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160510</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>4.6</td>
<td>ug/L</td>
<td>8260B</td>
<td>115</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260B</td>
<td>103</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYLBENZENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M,P-XYLENE</td>
<td>7.8</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>3.5</td>
<td>ug/L</td>
<td>8260B</td>
<td>88</td>
<td>80-120</td>
<td>LE LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>3.7</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-BUTYLBENZENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-PROPYLBENZENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>3.5</td>
<td>ug/L</td>
<td>8260B</td>
<td>88</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O-CHLOROTOLUENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O-XYLENE</td>
<td>3.8</td>
<td>ug/L</td>
<td>8260B</td>
<td>95</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-CHLOROTOLUENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-ISOPROPYLTOLUENE</td>
<td>3.7</td>
<td>ug/L</td>
<td>8260B</td>
<td>93</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC-BUTYLBENZENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>3.6</td>
<td>ug/L</td>
<td>8260B</td>
<td>90</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT-BUTYLBENZENE</td>
<td>3.9</td>
<td>ug/L</td>
<td>8260B</td>
<td>98</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260B</td>
<td>108</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260B</td>
<td>105</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS-1,2-DICHLOROETHENE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260B</td>
<td>100</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS-1,3-DICHLOROPROPENE</td>
<td>3.6</td>
<td>ug/L</td>
<td>8260B</td>
<td>90</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260B</td>
<td>103</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260B</td>
<td>110</td>
<td>80-120</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>4.8</td>
<td>ug/L</td>
<td>8260B</td>
<td>120</td>
<td>80-120</td>
<td>AH LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160510A</td>
<td>CALCIUM</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160510A</td>
<td>ARSENIC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160504A</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td>300.0</td>
<td>0-0</td>
<td>LRB</td>
<td>LRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160504</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160505</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160510A</td>
<td>0 CALCIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 IRON</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 MANGANESE</td>
<td>ND</td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160510A</td>
<td>0 ARSENIC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 BARIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 CADMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 CHROMIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 COPPER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 LEAD</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 SELENIUM</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 SILVER</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ZINC</td>
<td>ND</td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160509</td>
<td>0 MERCURY</td>
<td>ND</td>
<td>mg/L</td>
<td>245.1</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160505</td>
<td>0 2,4 - D</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2,4 DB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2,4,5 T</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ACIFLUORFEN</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 BENTAZON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 DALAPON</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 DICAMBA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 DICHLORPROP</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 DINOSEB</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 PENTACHLORPHENOL</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 PICLORAM</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 TOTAL DCPA</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 TRICLOPYR</td>
<td>ND</td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160510</td>
<td>0 1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CIS - 1,2 - DICHLOORETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Reference Number: 16-09951
Report Date: 05/24/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery Limits*</th>
<th>QC TypeQC</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160510</td>
<td>0 DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 ISOPROPYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 M.P.-XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 N - PROPYLEN ZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 P - ISOPROPYLTOLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>8260W_160510</td>
<td>0 VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260B</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-09951</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160504</td>
<td>0 ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160506</td>
<td>0 TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>ND</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>0-3</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160505</td>
<td>0 TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Reference Number: 16-09951
Report Date: 05/24/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Result</th>
<th>True Value</th>
<th>True Units</th>
<th>Method</th>
<th>% Recovery Limits*</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURB_160504</td>
<td>TURBIDITY</td>
<td>ND</td>
<td>NTU</td>
<td>180.1</td>
<td>MB</td>
<td>0-0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notation:

% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: 16-09951
Report Date: 05/24/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits* Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160510A</td>
<td>CALCIUM</td>
<td>2</td>
<td>2</td>
<td>mg/L</td>
<td>200.7</td>
<td>100</td>
<td>95-105</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>2.08</td>
<td>2</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>95-105</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>2.07</td>
<td>2</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>95-105</td>
<td>QCS</td>
</tr>
<tr>
<td>1</td>
<td>CALCIUM</td>
<td>19.5</td>
<td>20</td>
<td>mg/L</td>
<td>200.7</td>
<td>98</td>
<td>95-105</td>
<td>QCS</td>
</tr>
<tr>
<td>200.8_160510A</td>
<td>ARSENIC</td>
<td>0.042</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.042</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.041</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.040</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td>245.1_160509</td>
<td>MERCURY</td>
<td>0.00269</td>
<td>0.00265</td>
<td>mg/L</td>
<td>245.1</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td>COLOR_160504</td>
<td>COLOR</td>
<td>10</td>
<td>10</td>
<td>CU</td>
<td>SM2120 B</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td>I160504A</td>
<td>CHLORIDE</td>
<td>5.9</td>
<td>6</td>
<td>mg/L</td>
<td>300.0</td>
<td>98</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>4.03</td>
<td>4</td>
<td>mg/L</td>
<td>300.0</td>
<td>101</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>30.7</td>
<td>30</td>
<td>mg/L</td>
<td>300.0</td>
<td>102</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td>OPHOS_160504</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.47</td>
<td>0.50</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>94</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td>TDS_160506</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>498</td>
<td>500</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
</tr>
<tr>
<td>TPHOS_160505</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.037</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
</tr>
<tr>
<td>TURB_160504</td>
<td>TURBIDITY</td>
<td>1.00</td>
<td>1.00</td>
<td>NTU</td>
<td>180.1</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
</tr>
</tbody>
</table>

*Notation:
\% Recovery = \frac{\text{Result of Analysis}}{\text{True Value}} \times 100
NA = Indicates \% Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
SAMPLE DEPENDENT QUALITY CONTROL REPORT
Duplicate, Matrix Spike/Matrix Spike Duplicate and Confirmation Result Report

Duplicate

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate Result</th>
<th>QC Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160510A</td>
<td>22667</td>
<td>IRON</td>
<td>0.48</td>
<td>0.49</td>
<td>mg/L</td>
<td>2.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22667</td>
<td>MANGANESE</td>
<td>0.0268</td>
<td>0.0265</td>
<td>mg/L</td>
<td>1.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22667</td>
<td>CALCIUM</td>
<td>27.4</td>
<td>27.3</td>
<td>mg/L</td>
<td>0.4</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160510AWW</td>
<td>22168</td>
<td>ARSENIC</td>
<td>0.0037</td>
<td>0.0037</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22168</td>
<td>CADMIUM</td>
<td>0.00086</td>
<td>0.00098</td>
<td>mg/L</td>
<td>14.2</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22168</td>
<td>CHROMIUM</td>
<td>0.007</td>
<td>0.007</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22168</td>
<td>COPPER</td>
<td>0.020</td>
<td>0.020</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22168</td>
<td>LEAD</td>
<td>0.096</td>
<td>0.099</td>
<td>mg/L</td>
<td>3.1</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22168</td>
<td>SELENIUM</td>
<td>nd</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22168</td>
<td>SILVER</td>
<td>0.0001</td>
<td>0.0001</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22168</td>
<td>ZINC</td>
<td>0.451</td>
<td>0.461</td>
<td>mg/L</td>
<td>2.2</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22670</td>
<td>ARSENIC</td>
<td>0.0035</td>
<td>0.0035</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22670</td>
<td>BARIUM</td>
<td>0.035</td>
<td>0.035</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22670</td>
<td>CADMIUM</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22670</td>
<td>CHROMIUM</td>
<td>0.0002</td>
<td>0.0003</td>
<td>mg/L</td>
<td>40.0</td>
<td>0-20</td>
<td>IEV</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22670</td>
<td>COPPER</td>
<td>0.0015</td>
<td>0.0011</td>
<td>mg/L</td>
<td>30.8</td>
<td>0-20</td>
<td>IEV</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22670</td>
<td>LEAD</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22670</td>
<td>SELENIUM</td>
<td>0.0004</td>
<td>0.0003</td>
<td>mg/L</td>
<td>28.6</td>
<td>0-20</td>
<td>IEV</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22670</td>
<td>SILVER</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22670</td>
<td>ZINC</td>
<td>0.0016</td>
<td>0.0003</td>
<td>mg/L</td>
<td>136.6</td>
<td>0-20</td>
<td>IEV</td>
<td>DUP</td>
<td></td>
</tr>
<tr>
<td>245.1_160509</td>
<td>22042</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22693</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Duplicate</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.2_160505</td>
<td>23216</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8081B_160505</td>
<td>22666</td>
<td>BICARBONATE</td>
<td>194</td>
<td>195</td>
<td>mg CaCO₃/L</td>
<td>0.5</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160505</td>
<td>22666</td>
<td>2,4-D</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-40</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22666</td>
<td>2,4,5-T</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Duplicate</th>
<th>%RPD</th>
<th>Limits</th>
<th>QC</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>22666</td>
<td>DICAMBA</td>
<td>ug/L</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>DICHLORPROP</td>
<td>ug/L</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>DINOSEB</td>
<td>ug/L</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>PENTACHLOROPHENOL</td>
<td>ug/L</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>PICLORAM</td>
<td>ug/L</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>TOTAL DCPA</td>
<td>ug/L</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>TRICLOPYR</td>
<td>ug/L</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22294</td>
<td>COLOR</td>
<td>Color Units</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>NITRATE-N</td>
<td>mg/L</td>
<td>0.77</td>
<td>0.78</td>
<td>1.3</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22529</td>
<td>ORTHO-PHOSPHATE</td>
<td>mg/L</td>
<td>0.17</td>
<td>0.17</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22651</td>
<td>ORTHO-PHOSPHATE</td>
<td>mg/L</td>
<td>32.6</td>
<td>34.8</td>
<td>6.5</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>ORTHO-PHOSPHATE</td>
<td>mg/L</td>
<td>0.11</td>
<td>0.11</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>HYDROGEN ION (pH)</td>
<td>pH Units</td>
<td>7.28</td>
<td>7.32</td>
<td>0.5</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23001</td>
<td>HYDROGEN ION (pH)</td>
<td>pH Units</td>
<td>6.99</td>
<td>7.05</td>
<td>0.9</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23160</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>mg/L</td>
<td>153</td>
<td>158</td>
<td>3.2</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23270</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>mg/L</td>
<td>544</td>
<td>542</td>
<td>0.4</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22666</td>
<td>TOTAL PHOSPHORUS</td>
<td>mg/L</td>
<td>0.139</td>
<td>0.135</td>
<td>2.9</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23005</td>
<td>TOTAL PHOSPHORUS</td>
<td>mg/L</td>
<td>0.074</td>
<td>0.075</td>
<td>1.3</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22294</td>
<td>TURBIDITY</td>
<td>NTU</td>
<td>0.54</td>
<td>0.56</td>
<td>3.6</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22861</td>
<td>TURBIDITY</td>
<td>NTU</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Laboratory Fortified Matrix (MS)

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Spike Units</th>
<th>Percent Recovery</th>
<th>Limits*</th>
<th>%RPD</th>
<th>Limits*</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160510A</td>
<td></td>
<td>IRON</td>
<td>0.48</td>
<td>0.5</td>
<td>mg/L</td>
<td>90</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANGANESE</td>
<td>0.0268</td>
<td>0.5</td>
<td>mg/L</td>
<td>97</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CALCIUM</td>
<td>27.4</td>
<td>13</td>
<td>mg/L</td>
<td>82</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160510A</td>
<td></td>
<td>ARSENIC</td>
<td>0.0037</td>
<td>0.025</td>
<td>mg/L</td>
<td>94</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>0.00085</td>
<td>0.025</td>
<td>mg/L</td>
<td>98</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>0.007</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>0.020</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.096</td>
<td>0.025</td>
<td>mg/L</td>
<td>92</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>88</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>0.0001</td>
<td>0.0125</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZINC</td>
<td>0.451</td>
<td>0.025</td>
<td>mg/L</td>
<td>32</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>IS</td>
<td>LFM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARSENIC</td>
<td>0.0035</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BARIUM</td>
<td>0.035</td>
<td>0.025</td>
<td>mg/L</td>
<td>96</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>0.0002</td>
<td>0.025</td>
<td>mg/L</td>
<td>102</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>0.0015</td>
<td>0.025</td>
<td>mg/L</td>
<td>106</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>0.0004</td>
<td>0.025</td>
<td>mg/L</td>
<td>90</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>ND</td>
<td>0.013</td>
<td>mg/L</td>
<td>104</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>0.0016</td>
<td>0.025</td>
<td>mg/L</td>
<td>90</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160509</td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00163</td>
<td>mg/L</td>
<td>98</td>
<td>70-130</td>
<td>0.6</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00164</td>
<td>mg/L</td>
<td>99</td>
<td>70-130</td>
<td>0.6</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00167</td>
<td>mg/L</td>
<td>97</td>
<td>70-130</td>
<td>0.6</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310.2_160505</td>
<td></td>
<td>BICARBONATE</td>
<td>194</td>
<td>413</td>
<td>mg CaCO3/88</td>
<td>89</td>
<td>70-130</td>
<td>1.4</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160505</td>
<td></td>
<td>2.4 - D</td>
<td>ND</td>
<td>1.9</td>
<td>ug/L</td>
<td>95</td>
<td>60-120</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4 DB</td>
<td>ND</td>
<td>7.7</td>
<td>ug/L</td>
<td>96</td>
<td>49-134</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>1.0</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>68-122</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4,5 T</td>
<td>ND</td>
<td>0.94</td>
<td>ug/L</td>
<td>94</td>
<td>62-128</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>Limits*</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>22667</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>0.94</td>
<td>1</td>
<td>ug/L</td>
<td>94</td>
<td>NA</td>
<td>65-125</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22667</td>
<td>BENTAZON</td>
<td>ND</td>
<td>1.9</td>
<td>2</td>
<td>ug/L</td>
<td>95</td>
<td>NA</td>
<td>67-121</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22667</td>
<td>DALAPON</td>
<td>ND</td>
<td>13.5</td>
<td>13</td>
<td>ug/L</td>
<td>104</td>
<td>NA</td>
<td>53-421</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22667</td>
<td>DICAMBA</td>
<td>ND</td>
<td>0.99</td>
<td>1</td>
<td>ug/L</td>
<td>99</td>
<td>NA</td>
<td>66-126</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22667</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>3.0</td>
<td>3</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>63-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22667</td>
<td>DINOSEB</td>
<td>ND</td>
<td>1.9</td>
<td>2</td>
<td>ug/L</td>
<td>95</td>
<td>NA</td>
<td>73-127</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22667</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>0.98</td>
<td>1</td>
<td>ug/L</td>
<td>98</td>
<td>NA</td>
<td>69-123</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22667</td>
<td>PICLORAM</td>
<td>ND</td>
<td>0.91</td>
<td>1</td>
<td>ug/L</td>
<td>91</td>
<td>NA</td>
<td>48-114</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22667</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>0.6</td>
<td>1</td>
<td>ug/L</td>
<td>60</td>
<td>NA</td>
<td>48-168</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22667</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>1.0</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>3.5</td>
<td>4</td>
<td>ug/L</td>
<td>88</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>3.0</td>
<td>4</td>
<td>ug/L</td>
<td>75</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td>3.0</td>
<td>4</td>
<td>ug/L</td>
<td>75</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>3.0</td>
<td>4</td>
<td>ug/L</td>
<td>75</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>3.2</td>
<td>4</td>
<td>ug/L</td>
<td>80</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>3.8</td>
<td>4</td>
<td>ug/L</td>
<td>95</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>83</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>85</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>93</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>3.6</td>
<td>4</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>83</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>83</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>83</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>3.2</td>
<td>4</td>
<td>ug/L</td>
<td>80</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>85</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,3 - DICHLOROETHANE</td>
<td>ND</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>93</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>83</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>85</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>2.9</td>
<td>4</td>
<td>ug/L</td>
<td>73</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>BENZENE</td>
<td>ND</td>
<td>3.5</td>
<td>4</td>
<td>ug/L</td>
<td>88</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>83</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
<tr>
<td>22669</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>3.6</td>
<td>4</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
<td>LFM</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

FORM: QC Dependent.rpt

Reference Number: 16-09951
Report Date: 5/24/2016
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>22669</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>3.6</td>
<td>4</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>BROMOFORM</td>
<td>ND</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>83</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>3.2</td>
<td>4</td>
<td>ug/L</td>
<td>80</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>85</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>93</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>3.5</td>
<td>4</td>
<td>ug/L</td>
<td>88</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>3.0</td>
<td>4</td>
<td>ug/L</td>
<td>75</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>85</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>85</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>3.6</td>
<td>4</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>98</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>3.2</td>
<td>4</td>
<td>ug/L</td>
<td>80</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td>3.0</td>
<td>4</td>
<td>ug/L</td>
<td>75</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>M,P-XYLENE</td>
<td>ND</td>
<td>6.5</td>
<td>8</td>
<td>ug/L</td>
<td>81</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>3.0</td>
<td>4</td>
<td>ug/L</td>
<td>75</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>93</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>N-BUTYLBENZENE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>N-PROPYLBENZENE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>O-CHLOROTOLUENE</td>
<td>ND</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>83</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>O-XYLENE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>P-CHLOROTOLUENE</td>
<td>ND</td>
<td>3.2</td>
<td>4</td>
<td>ug/L</td>
<td>80</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>P-ISOPROPYLTOluene</td>
<td>ND</td>
<td>3.0</td>
<td>4</td>
<td>ug/L</td>
<td>75</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>STYRENE</td>
<td>ND</td>
<td>3.1</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>3.0</td>
<td>4</td>
<td>ug/L</td>
<td>78</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>85</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>TOLUENE</td>
<td>ND</td>
<td>3.6</td>
<td>4</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>TRANS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>3.3</td>
<td>4</td>
<td>ug/L</td>
<td>83</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>TRANS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>3.4</td>
<td>4</td>
<td>ug/L</td>
<td>85</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>22669</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>3.5</td>
<td>4</td>
<td>ug/L</td>
<td>88</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>Batch</td>
<td>Sample</td>
<td>Analyte</td>
<td>Spike</td>
<td>Spike</td>
<td>Spike</td>
<td>Percent Recovery</td>
<td>QC Qualifier</td>
<td>Type</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------------------</td>
<td>--------------</td>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Result</td>
<td>Result</td>
<td>Conc</td>
<td>MS</td>
<td>MSD</td>
<td>Limits*</td>
<td>%RPD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Limits*</td>
<td>%RPD</td>
<td>Limits*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trichlorofluoromethane

- **Batch**: 22669
- **Sample**: TRICHLOROFUOROMETHANE
- **Result**: ND
- **Spike Result**: 2.9 ug/L
- **Conc**: 4 ug/L
- **Units**: NA
- **MS**: 73
- **MSD**: NA
- **Limits**: 70-130
- **%RPD**: NA
- **Limit**: NA
- **%RPD**: 0-20
- **Type**: LFM

Vinyl Chloride

- **Batch**: 22669
- **Sample**: VINYL CHLORIDE
- **Result**: ND
- **Spike Result**: 4.9 ug/L
- **Conc**: 4 ug/L
- **Units**: NA
- **MS**: 123
- **MSD**: NA
- **Limits**: 70-130
- **%RPD**: NA
- **Limit**: NA
- **%RPD**: 0-20
- **Type**: LFM

chloride

- **Batch**: 22585
- **Sample**: CHLORIDE
- **Result**: 2.1 mg/L
- **Spike Result**: 3.1 mg/L
- **Conc**: 1 mg/L
- **Units**: NA
- **MS**: 100
- **MSD**: NA
- **Limits**: 90-110
- **%RPD**: NA
- **Limit**: NA
- **%RPD**: 0-20
- **Type**: LFM

Fluoride

- **Batch**: 22622
- **Sample**: FLUORIDE
- **Result**: 0.69 mg/L
- **Spike Result**: 1.72 mg/L
- **Conc**: 1 mg/L
- **Units**: NA
- **MS**: 103
- **MSD**: NA
- **Limits**: 90-110
- **%RPD**: NA
- **Limit**: NA
- **%RPD**: 0-20
- **Type**: LFM

Sulfate

- **Batch**: 22861
- **Sample**: SULFATE
- **Result**: 4.6 mg/L
- **Spike Result**: 6.4 mg/L
- **Conc**: 2 mg/L
- **Units**: NA
- **MS**: 90
- **MSD**: NA
- **Limits**: 90-110
- **%RPD**: NA
- **Limit**: NA
- **%RPD**: 0-20
- **Type**: LFM

Nitrate-N

- **Batch**: 22666
- **Sample**: NITRATE-N
- **Result**: 0.77 mg/L
- **Spike Result**: 1.30 mg/L
- **Conc**: 0.5 mg/L
- **Units**: NA
- **MS**: 106
- **MSD**: 104
- **Limits**: 80-120
- **%RPD**: 1.9
- **Limit**: NA
- **%RPD**: 0-20
- **Type**: LFM

Ortho-Phosphate

- **Batch**: 22529
- **Sample**: ORTHO-PHOSPHATE
- **Result**: 0.17 mg/L
- **Spike Result**: 1.10 mg/L
- **Conc**: 1.13 mg/L
- **Units**: NA
- **MS**: 93
- **MSD**: 96
- **Limits**: 70-130
- **%RPD**: 3.2
- **Limit**: NA
- **%RPD**: 0-20
- **Type**: LFM

Total Phosphorus

- **Batch**: 22666
- **Sample**: TOTAL PHOSPHORUS
- **Result**: 0.139 mg/L
- **Spike Result**: 0.189 mg/L
- **Conc**: 0.195 mg/L
- **Units**: NA
- **MS**: 100
- **MSD**: 112
- **Limits**: 70-130
- **%RPD**: 11.3
- **Limit**: NA
- **%RPD**: 0-20
- **Type**: LFM

- **Batch**: 23005
- **Sample**: TOTAL PHOSPHORUS
- **Result**: 0.074 mg/L
- **Spike Result**: 0.133 mg/L
- **Conc**: 0.124 mg/L
- **Units**: NA
- **MS**: 118
- **MSD**: 100
- **Limits**: 70-130
- **%RPD**: 16.5
- **Limit**: NA
- **%RPD**: 0-20
- **Type**: LFM

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of an analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Qualifier Definitions

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>Result was high for this analyte in the end standard, indicating an increase in detector response. No detection of this analyte was found in samples, therefore no further action taken.</td>
</tr>
<tr>
<td>H1</td>
<td>Sample analysis performed past holding time.</td>
</tr>
<tr>
<td>H3</td>
<td>Sample was received and analyzed past holding time.</td>
</tr>
<tr>
<td>H5</td>
<td>This test is specified to be performed in the field within 15 minutes of sampling; sample was received and analyzed past the regulatory holding time.</td>
</tr>
<tr>
<td>IEV</td>
<td>Acceptance criteria do not apply to estimated values</td>
</tr>
<tr>
<td>IS</td>
<td>The ratio of the spike concentration to sample background was too low to meet performance criteria</td>
</tr>
<tr>
<td>J</td>
<td>Indicates an estimated concentration. This occurs when an analyte concentration is below the calibration curve but is above the method detection limit.</td>
</tr>
<tr>
<td>LE</td>
<td>The end calibration verification for this compound was below the acceptance limit. There were no sample detections and there was adequate sensitivity at the reporting limit. No further action taken with this sample batch.</td>
</tr>
<tr>
<td>LR</td>
<td>Low recovery can not be accounted for. However, there is adequate sensitivity to detect the compound at the lower PQL. No sample detections so no further action for this analysis batch.</td>
</tr>
</tbody>
</table>

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.
<table>
<thead>
<tr>
<th>Sample Received Request (Must Include Fax or Email)</th>
<th>Phone: 541-382-9770</th>
<th>Fax: 541-382-9770</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><Sample Type></th>
<th><Sample Description></th>
<th><Lab Name></th>
<th><Address></th>
<th><City></th>
<th><State></th>
<th><Zip Code></th>
<th><Phone Number></th>
<th><Fax Number></th>
</tr>
</thead>
<tbody>
<tr>
<td>DW - Drinking Water</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW - Surface Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW - Stormwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW - Ground Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OW - Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field ID</th>
<th>Entry Number of Containers</th>
<th>Expected (100% Substrate)</th>
<th>Expected (60% Substrate)</th>
<th>Time Around Time Required</th>
<th>Location</th>
<th>Quicktest (100% Substrate)</th>
<th>Quicktest (60% Substrate)</th>
<th>Phone (Cell Phone)</th>
<th>Fax (Cell Phone)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>5</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>6</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>7</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td>8</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td>9</td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td>10</td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample by:</th>
<th>Phone: 541-382-9770</th>
<th>Fax: 541-382-9770</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve A.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment (Phone Call Red)</th>
<th>Quicktest (100% Substrate)</th>
<th>Quicktest (60% Substrate)</th>
<th>Time Around Time Required</th>
<th>Location</th>
<th>Phone (Cell Phone)</th>
<th>Fax (Cell Phone)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>Quicktest Receiving Water and Soil 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve A.</td>
<td>610 South Main St</td>
<td>Walla Walla</td>
<td>WA</td>
<td>99362</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>610 South Main St</td>
<td>541-382-9770</td>
<td>541-382-9770</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mail Lab (503-382-9535)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
May 26, 2016

Vista Work Order No. 1600562

Mr. Steven Patten
Walla Walla Basin Watershed Council
810 S. Main Street
Milton-Freewater, OR 97862

Dear Mr. Patten,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on May 04, 2016. This sample set was analyzed on a standard turn-around time, under your Project Name 'Stiller Pond'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director
Sample Condition on Receipt:

Five aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1668C

These samples were extracted and analyzed for 209 PCB congeners by EPA Method 1668C using a ZB-1 GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. PCB-11 was detected at 9.19 pg/L in the Method Blank. No other analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Narrative</td>
<td>1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Sample Inventory</td>
<td>4</td>
</tr>
<tr>
<td>Analytical Results</td>
<td>5</td>
</tr>
<tr>
<td>Qualifiers</td>
<td>32</td>
</tr>
<tr>
<td>Certifications</td>
<td>33</td>
</tr>
<tr>
<td>Sample Receipt</td>
<td>36</td>
</tr>
</tbody>
</table>
Sample Inventory Report

<table>
<thead>
<tr>
<th>Vista Sample ID</th>
<th>Client Sample ID</th>
<th>Sampled</th>
<th>Received</th>
<th>Components/Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600562-01</td>
<td>Mill Creek</td>
<td>03-May-16 10:45</td>
<td>04-May-16 10:04</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600562-02</td>
<td>GW_136</td>
<td>03-May-16 10:00</td>
<td>04-May-16 10:04</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600562-03</td>
<td>GW_145</td>
<td>03-May-16 10:50</td>
<td>04-May-16 10:04</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600562-04</td>
<td>GW_146</td>
<td>03-May-16 10:20</td>
<td>04-May-16 10:04</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600562-05</td>
<td>GW_147</td>
<td>03-May-16 09:15</td>
<td>04-May-16 10:04</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
</tbody>
</table>
ANALYTICAL RESULTS
Analyte | Conc. (pg/L) | DL | EMPC | Qualifiers
--- | --- | --- | --- | ---
PCB-1 | ND | 1.39 | |
PCB-2 | ND | 1.52 | |
PCB-3 | ND | 1.52 | |
PCB-4/10 | ND | 1.04 | |
PCB-5/8 | ND | 1.45 | |
PCB-6 | ND | 1.48 | |
PCB-7/9 | ND | 1.79 | |
PCB-11 | ND | 9.19 | |
PCB-12/13 | ND | 1.45 | |
PCB-14 | ND | 1.25 | |
PCB-15 | ND | 1.27 | |
PCB-16/32 | ND | 0.969 | J |
PCB-17 | ND | 0.812 | |
PCB-18 | ND | 0.769 | |
PCB-19 | ND | 0.990 | |
PCB-20/21/33 | ND | 0.424 | |
PCB-22 | ND | 0.429 | |
PCB-23 | ND | 0.413 | |
PCB-24/27 | ND | 0.598 | |
PCB-25 | ND | 0.455 | |
PCB-26 | ND | 0.404 | |
PCB-28 | ND | 0.765 | |
PCB-29 | ND | 0.413 | |
PCB-30 | ND | 0.626 | |
PCB-31 | ND | 0.884 | J |
PCB-34 | ND | 0.384 | |
PCB-35 | ND | 0.388 | |
PCB-36 | ND | 0.375 | |
PCB-37 | ND | 0.361 | |
PCB-38 | ND | 0.393 | |
PCB-39 | ND | 0.387 | |
PCB-40 | ND | 0.843 | |
PCB-41/64/71/72 | ND | 0.674 | J |
PCB-42/59 | ND | 0.585 | |
PCB-43/49 | ND | 0.655 | |

Analyte	**Conc. (pg/L)**	**DL**	**EMPC**	**Qualifiers**
PCB-44 | ND | 0.830 | |
PCB-45 | ND | 0.717 | |
PCB-46 | ND | 0.786 | |
PCB-47 | ND | 3.75 | J |
PCB-48/75 | ND | 0.545 | |
PCB-50 | ND | 0.721 | |
PCB-51 | ND | 1.09 | |
PCB-52/69 | ND | 0.913 | J |
PCB-53 | ND | 0.656 | |
PCB-54 | ND | 0.548 | |
PCB-55 | ND | 0.448 | |
PCB-56/60 | ND | 0.498 | |
PCB-57 | ND | 0.523 | |
PCB-58 | ND | 0.515 | |
PCB-61/70 | ND | 0.557 | |
PCB-62 | ND | 0.532 | |
PCB-63 | ND | 0.503 | |
PCB-65 | ND | 0.549 | |
PCB-66/76 | ND | 0.418 | J |
PCB-67 | ND | 0.536 | |
PCB-68 | ND | 0.785 | |
PCB-73 | ND | 0.529 | |
PCB-74 | ND | 0.483 | |
PCB-77 | ND | 0.478 | |
PCB-78 | ND | 0.501 | |
PCB-79 | ND | 0.475 | |
PCB-80 | ND | 0.416 | |
PCB-81 | ND | 0.457 | |
PCB-82 | ND | 2.12 | |
PCB-83 | ND | 1.30 | |
PCB-84/92 | ND | 1.73 | |
PCB-85/116 | ND | 1.55 | |
PCB-86 | ND | 2.09 | |
PCB-87/117/125 | ND | 1.36 | |
PCB-88/91 | ND | 1.79 | |

Notes:
- **DL:** Sample specific estimated detection limit
- **EMPC:** Estimated maximum possible concentration
- **LCL-UCL:** Lower control limit - upper control limit
- See individual congener qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>1.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>1.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>1.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>0.752</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.552</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.584</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>2.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Analyte Concentration (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.952</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>9.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>1.85</td>
<td>2.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>5.75</td>
<td>8.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>0.752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>2.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.929</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
Qualifiers - See individual congeners for qualifiers.
Sample ID: Method Blank

EPA Method 1668C

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>55.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>56.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>63.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>71.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>64.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>65.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>62.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>69.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>85.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>75.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>76.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>65.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>74.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>78.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>75.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>77.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>73.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>75.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>75.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>77.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>90.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>83.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>77.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>78.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>98.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>91.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>77.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>71.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>43.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>82.5</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Sample ID: OPR</th>
<th>EPA Method 1668C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix: Aqueous</td>
<td>QC Batch: B6E0061</td>
</tr>
<tr>
<td>Sample Size: 1.00 L</td>
<td>Date Extracted: 12-May-2016 8:50</td>
</tr>
<tr>
<td>Lab Sample: B6E0061-BS1</td>
<td>Date Analyzed: 12-May-16 17:06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/L)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Limits</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>796</td>
<td>1000</td>
<td>79.6</td>
<td>60 - 135</td>
<td>IS 13C-PCB-1</td>
<td>58.0</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-3</td>
<td>813</td>
<td>1000</td>
<td>81.3</td>
<td>60 - 135</td>
<td>IS 13C-PCB-3</td>
<td>58.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>1650</td>
<td>2000</td>
<td>82.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-4</td>
<td>68.6</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-15</td>
<td>862</td>
<td>1000</td>
<td>86.2</td>
<td>60 - 135</td>
<td>IS 13C-PCB-11</td>
<td>78.5</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-19</td>
<td>966</td>
<td>1000</td>
<td>96.6</td>
<td>60 - 135</td>
<td>IS 13C-PCB-9</td>
<td>71.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-37</td>
<td>918</td>
<td>1000</td>
<td>91.8</td>
<td>60 - 135</td>
<td>IS 13C-PCB-19</td>
<td>71.1</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-54</td>
<td>976</td>
<td>1000</td>
<td>97.6</td>
<td>60 - 135</td>
<td>IS 13C-PCB-28</td>
<td>84.9</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-77</td>
<td>887</td>
<td>1000</td>
<td>88.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-32</td>
<td>75.3</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-81</td>
<td>895</td>
<td>1000</td>
<td>89.5</td>
<td>60 - 135</td>
<td>IS 13C-PCB-37</td>
<td>103</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-104</td>
<td>1020</td>
<td>1000</td>
<td>102</td>
<td>60 - 135</td>
<td>IS 13C-PCB-47</td>
<td>80.6</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-105</td>
<td>786</td>
<td>1000</td>
<td>78.6</td>
<td>60 - 135</td>
<td>IS 13C-PCB-52</td>
<td>82.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>2010</td>
<td>2000</td>
<td>101</td>
<td>60 - 135</td>
<td>IS 13C-PCB-54</td>
<td>68.9</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-114</td>
<td>828</td>
<td>1000</td>
<td>82.8</td>
<td>60 - 135</td>
<td>IS 13C-PCB-70</td>
<td>86.5</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-123</td>
<td>1040</td>
<td>1000</td>
<td>104</td>
<td>60 - 135</td>
<td>IS 13C-PCB-77</td>
<td>92.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-126</td>
<td>808</td>
<td>1000</td>
<td>80.8</td>
<td>60 - 135</td>
<td>IS 13C-PCB-80</td>
<td>86.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-155</td>
<td>1050</td>
<td>1000</td>
<td>105</td>
<td>60 - 135</td>
<td>IS 13C-PCB-81</td>
<td>89.7</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-156</td>
<td>913</td>
<td>1000</td>
<td>91.3</td>
<td>60 - 135</td>
<td>IS 13C-PCB-95</td>
<td>83.6</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-157</td>
<td>920</td>
<td>1000</td>
<td>92.0</td>
<td>60 - 135</td>
<td>IS 13C-PCB-97</td>
<td>87.4</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-167</td>
<td>916</td>
<td>1000</td>
<td>91.6</td>
<td>60 - 135</td>
<td>IS 13C-PCB-101</td>
<td>84.7</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-169</td>
<td>950</td>
<td>1000</td>
<td>95.0</td>
<td>60 - 135</td>
<td>IS 13C-PCB-104</td>
<td>78.0</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-188</td>
<td>951</td>
<td>1000</td>
<td>95.1</td>
<td>60 - 135</td>
<td>IS 13C-PCB-105</td>
<td>105</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-189</td>
<td>960</td>
<td>1000</td>
<td>96.0</td>
<td>60 - 135</td>
<td>IS 13C-PCB-114</td>
<td>97.2</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-202</td>
<td>1010</td>
<td>1000</td>
<td>101</td>
<td>60 - 135</td>
<td>IS 13C-PCB-118</td>
<td>89.8</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-205</td>
<td>898</td>
<td>1000</td>
<td>89.8</td>
<td>60 - 135</td>
<td>IS 13C-PCB-123</td>
<td>91.8</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-206</td>
<td>967</td>
<td>1000</td>
<td>96.7</td>
<td>60 - 135</td>
<td>IS 13C-PCB-126</td>
<td>114</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-208</td>
<td>984</td>
<td>1000</td>
<td>98.4</td>
<td>60 - 135</td>
<td>IS 13C-PCB-127</td>
<td>106</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-209</td>
<td>919</td>
<td>1000</td>
<td>91.9</td>
<td>60 - 135</td>
<td>IS 13C-PCB-138</td>
<td>90.1</td>
<td>40 - 145</td>
</tr>
</tbody>
</table>

Work Order 1600562 Page 10 of 37
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/L)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Limits</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-202 IS</td>
<td>56.1</td>
<td>40</td>
<td>145</td>
<td>13C-PCB-202</td>
<td>56.1</td>
<td>40 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206 IS</td>
<td>86.1</td>
<td>40</td>
<td>145</td>
<td>13C-PCB-206</td>
<td>86.1</td>
<td>40 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208 IS</td>
<td>78.0</td>
<td>40</td>
<td>145</td>
<td>13C-PCB-208</td>
<td>78.0</td>
<td>40 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209 IS</td>
<td>84.2</td>
<td>40</td>
<td>145</td>
<td>13C-PCB-209</td>
<td>84.2</td>
<td>40 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-79 CRS</td>
<td>97.2</td>
<td>40</td>
<td>145</td>
<td>13C-PCB-79</td>
<td>97.2</td>
<td>40 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178 CRS</td>
<td>82.6</td>
<td>40</td>
<td>145</td>
<td>13C-PCB-178</td>
<td>82.6</td>
<td>40 - 145</td>
<td></td>
</tr>
</tbody>
</table>

LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>6.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>2.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>1.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>1.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>10.7</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>1.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>2.07</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>0.924</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>3.33</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>1.77</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>1.59</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>ND</td>
<td>2.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.592</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>2.96</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>0.865</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>0.961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>2.39</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>0.980</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>2.08</td>
<td></td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-44</td>
<td>ND</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>0.556</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>0.941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>5.15</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>0.901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>1.07</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>3.26</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-53</td>
<td>0.601</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>0.684</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>1.23</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>0.538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>2.92</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>0.607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>0.526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>0.626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>1.73</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>0.561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>1.07</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>0.633</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>0.785</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-75</td>
<td>ND</td>
<td>0.562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>ND</td>
<td>0.527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>ND</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td>0.823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>1.18</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td></td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>4.09</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td></td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td></td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>2.95</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td></td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>0.944</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td></td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td></td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td></td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td></td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td></td>
<td>0.669</td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>2.37</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td></td>
<td>0.928</td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td></td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>4.20</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td></td>
<td>0.912</td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td></td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td></td>
<td>0.561</td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td></td>
<td>0.901</td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td></td>
<td>0.852</td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td></td>
<td>0.992</td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td></td>
<td>0.668</td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td></td>
<td>0.990</td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td></td>
<td>0.950</td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td></td>
<td>0.603</td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td></td>
<td>0.595</td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>0.726</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td></td>
<td>0.743</td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td></td>
<td>0.800</td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td></td>
<td>0.784</td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td></td>
<td>0.686</td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td></td>
<td>0.729</td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>0.355</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td></td>
<td>1.47</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Data

- **Lab Sample:** 1600562-01
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 12-May-16 21:27
 - **Column:** ZB-1
 - **Analyst:** MAS

Analyte Concentration (pg/L) Qualifiers DL EMPC Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>0.625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>3.91</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>3.46</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>0.913</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>0.503</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>1.20</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>3.16</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-154</td>
<td>ND</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>0.977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>0.402</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-157</td>
<td>ND</td>
<td>0.451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>0.576</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>ND</td>
<td>0.485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>ND</td>
<td>0.465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>0.489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>0.522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>ND</td>
<td>0.505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>ND</td>
<td>0.576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>ND</td>
<td>0.620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>0.759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>0.906</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-175</td>
<td>ND</td>
<td>0.659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>0.636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.496</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: Mill Creek

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:45

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600562-01
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 12-May-16 21:27
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>2.08</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.849</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>0.647</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>0.753</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.752</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.809</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.304</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.307</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.935</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>Total monoCB</td>
<td>6.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>13.5</td>
<td>17.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>23.8</td>
<td>25.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>15.7</td>
<td>19.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>15.2</td>
<td>15.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>2.99</td>
<td>5.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PCB</td>
<td>91.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC: Estimated maximum possible concentration

DL: Sample specific estimated detection limit

LCL-UCL: Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: Mill Creek

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:45

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600562-01
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 12-May-16 21:27
- **Column:** ZB-1
- **Analyst:** MAS

Sample Data

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>52.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>53.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-2</td>
<td>61.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>73.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>62.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-5</td>
<td>60.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-6</td>
<td>78.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-7</td>
<td>71.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-8</td>
<td>96.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>78.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-10</td>
<td>80.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>65.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-12</td>
<td>85.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-13</td>
<td>93.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-14</td>
<td>87.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-15</td>
<td>92.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-16</td>
<td>83.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-17</td>
<td>92.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-18</td>
<td>86.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>81.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-20</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-21</td>
<td>99.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-22</td>
<td>90.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-23</td>
<td>95.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-24</td>
<td>114</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-25</td>
<td>108</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-26</td>
<td>87.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-27</td>
<td>86.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>83.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-29</td>
<td>54.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-30</td>
<td>94.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-31</td>
<td>92.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>90.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-33</td>
<td>93.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-34</td>
<td>94.8</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: GW_136

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:00

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.986 L

Laboratory Data
- **Lab Sample:** 1600562-02
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 12-May-16 22:32
- **Column:** ZB-1
- **Analyst:** MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.28</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-3</td>
<td>6.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>34.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>84.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>7.48</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-11</td>
<td>13.3</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>13.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>25.5</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-17</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>36.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>4.17</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>18.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.57</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>1.96</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>4.11</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>19.3</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>2.29</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.888</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>3.61</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>1.67</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>3.09</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

Analyte
- **Conc. (pg/L)**
- **DL** - Sample specific estimated detection limit
- **EMPC** - Estimated maximum possible concentration
- **Qualifiers**

EMPC - Estimated maximum possible concentration

See individual congeners for qualifiers.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:00

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.986 L

Laboratory Data
- **Lab Sample:** 1600562-02
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 12-May-16 22:32
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1.35</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>1.27</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>0.721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>0.989</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.50</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-125</td>
<td>ND</td>
<td>0.541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit

EMPC - Estimated maximum possible concentration

Qualifiers - See individual congeners for qualifiers.

Analyte Concentration

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>0.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>1.20</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>ND</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>2.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>ND</td>
<td>0.679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>ND</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>ND</td>
<td>0.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>2.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>1.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>ND</td>
<td>1.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>1.03</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-154</td>
<td>ND</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>ND</td>
<td>0.483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>ND</td>
<td>0.503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>ND</td>
<td>0.532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>ND</td>
<td>0.520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>0.536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>0.587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>ND</td>
<td>0.562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>ND</td>
<td>0.583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>ND</td>
<td>0.627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>0.768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>ND</td>
<td>0.659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>ND</td>
<td>0.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>0.670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.654</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample ID: GW_136</td>
<td>EPA Method 1668C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:00

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.986 L

Laboratory Data
- **Lab Sample:** 1600562-02
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 12-May-16 22:32
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Conc. (pg/L) DL EMPC Qualifiers

PCB-180	ND	0.586
PCB-181	ND	0.629
PCB-182/187	ND	0.619
PCB-183	ND	0.575
PCB-184	ND	0.525
PCB-185	ND	0.604
PCB-186	ND	0.483
PCB-188	ND	0.462
PCB-189	ND	0.380
PCB-190	ND	0.418
PCB-191	ND	0.456
PCB-192	ND	0.488
PCB-193	ND	0.458
PCB-194	0.656	J
PCB-195	ND	0.392
PCB-196/203	ND	1.20
PCB-197	ND	0.853
PCB-198	ND	1.32
PCB-199	ND	1.34
PCB-200	ND	0.961
PCB-201	ND	0.908
PCB-202	ND	0.976
PCB-204	ND	0.926
PCB-205	ND	0.277
PCB-206	ND	0.411
PCB-207	ND	0.269
PCB-208	ND	0.273
PCB-209	ND	0.288

Analyte Conc. (pg/L) DL EMPC Qualifiers

Total monoCB	25.5	
Total diCB	169	
Total triCB	159	
Total tetraCB	29.8	31.3
Total pentaCB	5.11	6.60
Total hexaCB	2.23	3.78
Total heptaCB	ND	0.768
Total octaCB	0.656	
Total nonaCB	ND	0.411
DecaCB	ND	0.288
Total PCB	391	

Notes:
- DL - Sample specific estimated detection limit
- EMPC - Estimated maximum possible concentration
- LCL-UCL - Lower control limit - upper control limit
- See individual congeners for qualifiers.
Sample ID: GW_136

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:00

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 0.986 L

Laboratory Data
- **Lab Sample:** 1600562-02
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Column:** ZB-1
- **Analyst:** MAS

Labeled Standard

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>48.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>49.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>57.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>73.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>62.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>64.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>78.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>69.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>96.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>78.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>80.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>65.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>85.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>82.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>85.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>84.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>93.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>92.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>87.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>87.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>96.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>93.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>91.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>109</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>83.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>83.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>82.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>50.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>88.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>86.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>86.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>87.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>88.0</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Labeled Standard

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-170</td>
<td>71.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>70.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>60.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>73.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>80.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>51.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>76.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>67.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>66.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>CRS</td>
<td>13C-PCB-79</td>
<td>96.7</td>
<td>10 - 145</td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>78.7</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **EMPC** - Estimated maximum possible concentration
- **DL** - Sample specific estimated detection limit
- **LCL-UCL** - Lower control limit - upper control limit
- See individual congeners for qualifiers.

Work Order 1600562
Sample ID: GW_145

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:50

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600562-03
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 12-May-16 23:38
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.25</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>8.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>47.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>1.04</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-11</td>
<td>13.1</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>33.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>17.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>48.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>5.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>3.48</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>2.22</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>4.89</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>26.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>25.1</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>2.96</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.911</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>3.85</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>2.02</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>3.68</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1.75</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>1.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>1.51</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>0.696</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.346</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>0.948</td>
<td></td>
<td>1.11</td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>1.28</td>
<td></td>
<td>1.21</td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.33</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.494</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.538</td>
<td></td>
<td>0.486</td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.819</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>1.09</td>
<td></td>
<td>0.375</td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.736</td>
<td></td>
<td>0.486</td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.718</td>
<td></td>
<td>0.359</td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>Qualifiers</th>
<th>EMPC</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>Qualifiers</th>
<th>EMPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.581</td>
<td>Total octaCB</td>
<td>0.639</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.425</td>
<td>Total nonaCB</td>
<td>ND</td>
<td>0.545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.460</td>
<td>DecaCB</td>
<td>ND</td>
<td>0.464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.427</td>
<td>Total PCB</td>
<td>487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.343</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.639</td>
<td>J</td>
<td></td>
<td></td>
<td>Total PCB</td>
<td>487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.435</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.708</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td></td>
<td></td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td></td>
<td></td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.799</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.754</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.811</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.769</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td></td>
<td></td>
<td>0.464</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>33.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total dCB</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total trICB</td>
<td>204</td>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>34.3</td>
<td></td>
<td></td>
<td>35.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>5.29</td>
<td></td>
<td></td>
<td>6.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>1.09</td>
<td>1.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.581</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **DL**: Sample specific estimated detection limit
- **EMPC**: Estimated maximum possible concentration
- **LCL-UCL**: Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: GW_145

Client Data
Name: Walla Walla Basin Watershed Council
Project: Stiller Pond
Date Collected: 03-May-2016 10:50

Sample Data
Matrix: Aqueous
Sample Size: 1.02 L

Laboratory Data
Lab Sample: 1600562-03
QC Batch: B6E0061
Date Analyzed: 12-May-2016 23:38
Column: ZB-1
Analyst: MAS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>53.7</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-170</td>
<td>70.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>55.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-180</td>
<td>72.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>62.8</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-188</td>
<td>58.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>74.4</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-189</td>
<td>73.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>66.3</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-194</td>
<td>81.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>64.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-202</td>
<td>51.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>77.7</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-206</td>
<td>77.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>74.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-209</td>
<td>72.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>74.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>76.1</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-79</td>
<td>92.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>60.3</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-79CRS</td>
<td>92.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>80.9</td>
<td>5 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>85.2</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>84.2</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>78.9</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>82.6</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>78.8</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>73.9</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>98.8</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>91.3</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>84.6</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>86.8</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>98.7</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>84.0</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>80.2</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>78.3</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>44.9</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>90.0</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>87.3</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>86.1</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>88.0</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>88.0</td>
<td>10 - 145</td>
<td></td>
<td>13C-PCB-178</td>
<td>74.7</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.

EMPC - Estimated maximum possible concentration
Sample ID: GW_146
Client Data
Name: Walla Walla Basin Watershed Council
Project: Stiller Pond
Date Collected: 03-May-2016 10:20

Sample Data
Matrix: Aqueous
Sample Size: 1.02 L

Laboratory Data
Lab Sample: 1600562-04
QC Batch: B6E0061
Date Analyzed: 13-May-2016 00:43
Column: ZB-1
Analyst: MAS
Date Received: 04-May-2016 10:04
Date Extracted: 12-May-2016 8:50

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.65</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-3</td>
<td>8.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>44.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>15.2</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>0.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>34.3</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-17</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>46.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>5.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>26.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>3.54</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>3.27</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>5.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>28.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>0.374</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>28.1</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>3.16</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>1.35</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>4.34</td>
<td></td>
<td></td>
<td>B, J</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>2.34</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>3.76</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Sample ID: GW_146

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:20

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600562-04
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 13-May-16 00:43
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>0.951</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1.48</td>
<td>0.14</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-93</td>
<td>0.989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>0.929</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>0.690</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>0.633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>0.929</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-100</td>
<td>0.783</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>0.779</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>0.597</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>0.289</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>0.820</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.40</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.56</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-113</td>
<td>0.707</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>0.382</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>0.560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>0.530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>0.596</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>0.455</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>0.617</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>0.592</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>0.394</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>0.394</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>0.479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>0.552</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>0.532</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Sample ID: GW_146

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:20

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600562-04
- **QC Batch:** B6E0061
- **Date Analyzed:** 13-May-16 00:43
- **Column:** ZB-1
- **Analyst:** MAS

Analyte Concentration

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td></td>
<td>0.550</td>
<td></td>
<td>Total octaCB</td>
<td>ND</td>
<td></td>
<td>0.556</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td></td>
<td>0.647</td>
<td></td>
<td>Total nonaCB</td>
<td>ND</td>
<td></td>
<td>0.356</td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td></td>
<td>0.594</td>
<td></td>
<td>DecaCB</td>
<td>ND</td>
<td></td>
<td>0.265</td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td></td>
<td>0.610</td>
<td></td>
<td>Total PCB</td>
<td>521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td></td>
<td>0.329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td></td>
<td>0.367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td></td>
<td>0.302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td></td>
<td>0.289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td></td>
<td>0.237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td></td>
<td>0.254</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td></td>
<td>0.277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td></td>
<td>0.296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td></td>
<td>0.278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td></td>
<td>0.556</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td></td>
<td>0.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td></td>
<td>0.838</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td></td>
<td>0.596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td></td>
<td>0.922</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td></td>
<td>0.937</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td></td>
<td>0.672</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td></td>
<td>0.634</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td></td>
<td>0.682</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td></td>
<td>0.647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td></td>
<td>0.212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td></td>
<td>0.356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td></td>
<td>0.231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td></td>
<td>0.282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td></td>
<td>0.265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total monoCB: 32.5
Total diCB: 226
Total triCB: 217
Total tetraCB: 37.8
Total pentaCB: 5.36
Total hexaCB: 2.44
Total heptaCB: ND

Total octaCB: ND
Total nonaCB: ND
DecaCB: ND

Total PCB: 521

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: GW_146

EPA Method 1668C

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 10:20

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600562-04
- **QC Batch:** B6E0061
- **Date Collected:** 04-May-2016 10:04
- **Date Received:** 04-May-2016 10:04
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 13-May-2016 00:43
- **Column:** ZB-1
- **Analyst:** MAS

Labeled Standard

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 13C-PCB-1</td>
<td>69.5</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>65.4</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>71.5</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>77.0</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>72.3</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>65.8</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>77.7</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>73.5</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>98.1</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>78.8</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>83.7</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>68.4</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>85.9</td>
<td>5-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>90.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>85.8</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>89.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>86.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>91.5</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>85.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>81.8</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>108</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>102</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>95.3</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>92.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>116</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>108</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>92.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>88.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>87.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>51.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>96.3</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>94.3</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>94.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>95.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>95.0</td>
<td>10-145</td>
<td></td>
</tr>
</tbody>
</table>

Labeled Standard (Continued)

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-170</td>
<td>77.9</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-180</td>
<td>75.6</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-188</td>
<td>64.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-189</td>
<td>78.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-194</td>
<td>86.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-202</td>
<td>56.5</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-206</td>
<td>83.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-208</td>
<td>75.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-209</td>
<td>76.3</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>CRS 13C-PCB-79</td>
<td>98.3</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>83.8</td>
<td>10-145</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
- See individual congeners for qualifiers.
Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600562-05
- **Date Received:** 04-May-2016 10:04
- **QC Batch:** B6E0061
- **Date Extracted:** 12-May-2016 8:50
- **Date Analyzed:** 13-May-16 01:48
- **Column:** ZB-1
- **Analyst:** MAS

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Stiller Pond
- **Date Collected:** 03-May-2016 9:15

Sample Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>26.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>1.73</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>9.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>50.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>1.98</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-11</td>
<td>17.8</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>1.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>1.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>21.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>41.0</td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-17</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>57.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>7.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>31.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>17.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>4.65</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>3.56</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>6.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>32.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.537</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PCB-31</td>
<td>34.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>4.13</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.692</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>5.48</td>
<td></td>
<td></td>
<td>J, B</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>2.58</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>5.16</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: GW_147
Client Data
Name: Walla Walla Basin Watershed Council
Project: Stiller Pond
Date Collected: 03-May-2016 9:15

Sample Data
Matrix: Aqueous
Sample Size: 1.01 L

Laboratory Data
Lab Sample: 1600562-05
Date Received: 04-May-2016 10:04
QC Batch: B6E0061
Date Extracted: 12-May-2016 8:50
Date Analyzed: 13-May-16 01:48
Column: ZB-1
Analyst: MAS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1.90</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>2.19</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>0.862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>0.897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>1.29</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.558</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.66</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.704</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.646</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>1.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>0.698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>1.81</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>ND</td>
<td>1.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>1.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>ND</td>
<td>0.711</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>ND</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>ND</td>
<td>0.644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>1.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>1.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>1.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>ND</td>
<td>1.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>1.96</td>
<td></td>
<td>J, B</td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>ND</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>ND</td>
<td>0.515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>ND</td>
<td>0.535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>ND</td>
<td>0.564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>ND</td>
<td>0.545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>0.514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>0.595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>ND</td>
<td>0.741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>ND</td>
<td>0.682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>ND</td>
<td>0.733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>0.899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-174</td>
<td>ND</td>
<td>0.770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-175</td>
<td>ND</td>
<td>0.827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-176</td>
<td>ND</td>
<td>0.595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-177</td>
<td>ND</td>
<td>0.784</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-178</td>
<td>ND</td>
<td>0.806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-179</td>
<td>ND</td>
<td>0.623</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit
EMPC - Estimated maximum possible concentration
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td></td>
<td>0.790</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td></td>
<td>0.736</td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td></td>
<td>0.815</td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td></td>
<td>0.708</td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td></td>
<td>0.647</td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td></td>
<td>0.707</td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td></td>
<td>0.594</td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td></td>
<td>0.569</td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td></td>
<td>0.466</td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td></td>
<td>0.551</td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td></td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td></td>
<td>0.571</td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td></td>
<td>0.536</td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.728</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td></td>
<td>0.449</td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td></td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td></td>
<td>0.986</td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td></td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td></td>
<td>0.797</td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td></td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td></td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td></td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td></td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td></td>
<td>0.318</td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td></td>
<td>0.424</td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td></td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td></td>
<td>0.271</td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>0.464</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total monoCB</td>
<td>37.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>47.6</td>
<td>49.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>7.05</td>
<td>9.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>3.77</td>
<td>5.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Sample ID: GW_147

Client Data
- Name: Walla Walla Basin Watershed Council
- Project: Stiller Pond
- Date Collected: 03-May-2016 9:15

Sample Data
- Matrix: Aqueous
- Sample Size: 1.01 L

Laboratory Data
- Lab Sample: 1600562-05
- QC Batch: B6E0061
- Date Analyzed: 13-May-16 01:48
- Column: ZB-1
- Analyst: MAS

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td></td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>56.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>52.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>59.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>65.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>59.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>57.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>64.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>61.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>81.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>71.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>72.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>76.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>77.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>84.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>71.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>79.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>76.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>70.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>97.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>89.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>88.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>111</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>85.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>84.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>84.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>47.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>90.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>87.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>87.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>89.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>90.8</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-79</td>
<td>93.3</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-178</td>
<td>80.8</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.
CERTIFICATIONS

<table>
<thead>
<tr>
<th>Accrediting Authority</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Department of Health – ELAP</td>
<td>2892</td>
</tr>
<tr>
<td>DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005</td>
<td>3091.01</td>
</tr>
<tr>
<td>Florida Department of Health</td>
<td>E87777</td>
</tr>
<tr>
<td>Hawaii Department of Health</td>
<td>N/A</td>
</tr>
<tr>
<td>Louisiana Department of Environmental Quality</td>
<td>01977</td>
</tr>
<tr>
<td>Maine Department of Health</td>
<td>2014022</td>
</tr>
<tr>
<td>Nevada Division of Environmental Protection</td>
<td>CA004132015-1</td>
</tr>
<tr>
<td>New Jersey Department of Environmental Protection</td>
<td>CA003</td>
</tr>
<tr>
<td>New York Department of Health</td>
<td>11411</td>
</tr>
<tr>
<td>Oregon Laboratory Accreditation Program</td>
<td>4042-004</td>
</tr>
<tr>
<td>Pennsylvania Department of Environmental Protection</td>
<td>012</td>
</tr>
<tr>
<td>South Carolina Department of Health</td>
<td>87002001</td>
</tr>
<tr>
<td>Texas Commission on Environmental Quality</td>
<td>T104704189-15-6</td>
</tr>
<tr>
<td>Virginia Department of General Services</td>
<td>7923</td>
</tr>
<tr>
<td>Washington Department of Ecology</td>
<td>C584</td>
</tr>
<tr>
<td>Wisconsin Department of Natural Resources</td>
<td>998036160</td>
</tr>
</tbody>
</table>

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.
NELAP Accredited Test Methods

MATRIX: Air

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Polychlorinated p-Dioxins & Polychlorinated Dibenzofurans</td>
<td>EPA 23</td>
</tr>
</tbody>
</table>

MATRIX: Biological Tissue

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>

MATRIX: Drinking Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
</tbody>
</table>

MATRIX: Non-Potentable Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Dioxin by GC/HRMS</td>
<td>EPA 613</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>

MATRIX: Solids

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
</tbody>
</table>

Work Order 1600562
<table>
<thead>
<tr>
<th>Dilution GC/HRMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>
CHAIN OF CUSTODY RECORD

Project ID: Stiller Pond
Sampler: Steven Patten & Tara Patten

<table>
<thead>
<tr>
<th>Invoice to: Name</th>
<th>Company</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
<th>Ph#</th>
<th>Fax#</th>
<th>TAT: (Check One)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chris Sheets</td>
<td>WWBWC</td>
<td>810 S. Main St</td>
<td>Milton Freewater</td>
<td>OR</td>
<td>97862</td>
<td>541-938-2170</td>
<td>541-938-2170</td>
<td>Standard 21 days</td>
</tr>
<tr>
<td>Relinquished by:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rush (surcharge may apply)</td>
</tr>
</tbody>
</table>
| Steven Patten | | | | | | | | 14 days
| Relinquished by: | | | | | | | | Specify: 7 days |

SHIP TO: Vista Analytical Laboratory
1104 Windfield Way
El Dorado Hills, CA 95762
(916) 673-1520 • Fax (916) 673-0106

Method of Shipment: UPS
Tracking No.:

Sample ID
Date
Time
Location/Sample Description
Container(s):

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Location/Sample Description</th>
<th>Container(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Creek</td>
<td>5-3-16</td>
<td>10:45</td>
<td>Stiller Pond</td>
<td>2L A AQ</td>
</tr>
<tr>
<td>GW_136</td>
<td>5-3-16</td>
<td>10:50</td>
<td>Stiller Pond</td>
<td>2L A AQ</td>
</tr>
<tr>
<td>GW_145</td>
<td>5-3-16</td>
<td>10:50</td>
<td>Stiller Pond</td>
<td>2L A AQ</td>
</tr>
<tr>
<td>GW_146</td>
<td>5-3-16</td>
<td>10:50</td>
<td>Stiller Pond</td>
<td>2L A AQ</td>
</tr>
<tr>
<td>GW_147</td>
<td>5-3-16</td>
<td>10:50</td>
<td>Stiller Pond</td>
<td>2L A AQ</td>
</tr>
</tbody>
</table>

Special Instructions/Comments:

Name: Steven Patten
Company: WWBWC
Address: 810 S. Main
City: Milton-Freewater
State: OR
Zip: 97862
Phone: 541-938-2170
Fax: 541-938-2170
Email: steven.patten@wwbc.org

Container Types: A = 1 Liter Amber, G = Glass Jar
P = PUF, T = MMS Train, O = Other

Bottle Preservative Type:
T = Thiosulfate, O = Other

Matrix Types: DW = Drinking Water, EF = Effluent, PP = Pulp/Paper,
SD = Sediment, SL = Sludge, SO = Soil, WW = Wastewater, B = Blood/Serum
O = Other

SEND DOCUMENTATION AND RESULTS TO:

Work Order 1600562
Page 36 of 37
SAMPLE LOG-IN CHECKLIST

Samples Arrival:
- **Date/Time:** 5/4/16 1004
- **Initials:** SR
- **Location:** WR-2
- **Shelf/Rack:** N/A

Logged In:
- **Date/Time:** 5/4/16 1039
- **Initials:** GA
- **Location:** WR-2
- **Shelf/Rack:** C-3

Delivered By:
- FedEx
- UPS
- On Trac
- DHL
- Hand Delivered
- Other

Preservation:
- Ice
- Blue Ice
- Dry Ice
- None

Temp °C:
- Uncorrected: 1.9
- Corrected: 0.6
- Time: 1006
- Thermometer ID: IR-2

Checkmarks:
- Adequate Sample Volume Received? Yes
- Holding Time Acceptable? Yes
- Shipping Container(s) Intact? Yes
- Shipping Custody Seals Intact? Yes
- Shipping Documentation Present? Yes
- Airbill: Trk # 1Z 62E 3F7 01 0360
- Sample Container Intact? Yes
- Sample Custody Seals Intact? Yes
- Chain of Custody / Sample Documentation Present? Yes
- COC Anomaly/Sample Acceptance Form completed? Yes

Comments:

Sample Login 11/2013 cka

Work Order 1600562 Page 37 of 37
LAST CHANCE ROAD – WY2016 (PRE-OPERATIONS SAMPLE ONLY)
March 30, 2016

Mr. Steve Patten
Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

RE: 16-05523 - Aquifer Recharge Water and Soil

Dear Mr. Steve Patten,

Your project: Aquifer Recharge Water and Soil, was received on Tuesday March 15, 2016.

All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone us at 800 755-9295.

Respectfully

[Signature]

Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Enclosures: Data Report
Case Narrative

Sample Information

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Sample Information</th>
<th>Analytical Method</th>
<th>Notes</th>
<th>Created by</th>
</tr>
</thead>
<tbody>
<tr>
<td>12861</td>
<td>Last Chance - Intake</td>
<td>SM2120 B</td>
<td>Sample was filtered before measurement.</td>
<td>RHF</td>
</tr>
<tr>
<td>12862</td>
<td>Last Chance - GW-148</td>
<td>SM2120 B</td>
<td>Sample was filtered before measurement.</td>
<td>RHF</td>
</tr>
<tr>
<td>12865</td>
<td>Last Chance - GW-159</td>
<td>SM2120 B</td>
<td>Sample was filtered before measurement.</td>
<td>RHF</td>
</tr>
</tbody>
</table>

Reference: 16-05523
Data Report

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
City, State: Milton-Freewater, OR 97862
Reference Number: 16-05523
Project: Aquifer Recharge Water and Soil

Report Date: 3/30/16
Date Received: 3/15/16
Approved by: anp,bj,ckk,fm,mvp
Authorized by: Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Sample Description:
Last Chance - Intake

Lab Number: 12861
Sample Comment:

Sample Date: 3/14/16 11:15 am
Collected By: Steven Patten

### CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Lab	Analyzed	Analyst	Batch	Comment
E-10617 | TURBIDITY | 4.17 | 0.10 | NTU | 1.0 | 180.1 | a | 3/15/16 | RHF | TURB_160315 |
7439-97-6 | MERCURY | ND | 0.0002 | 1.40E-05 | mg/L | 1.0 | 245.1 | a | 3/21/16 | MMH | 245.1_160321 |
16887-00-6 | CHLORIDE | 2.1 | 0.1 | 0.0043 | mg/L | 1.0 | 300.0 | a | 3/16/16 | MMH | I160315A |
16984-48-8 | FLUORIDE | ND | 0.1 | 0.0049 | mg/L | 1.0 | 300.0 | a | 3/16/16 | MMH | I160315A |
14808-79-8 | SULFATE | 4.8 | 0.2 | 0.0087 | mg/L | 1.0 | 300.0 | a | 3/16/16 | MMH | I160315A |
NA | BICARBONATE | 62.5 | 5.0 | mg CaCO3/L | 1.0 | 310.2 | a | 3/16/16 | ANP | 310.2_160318 |
NA | CARBONATE | ND | 5.0 | mg CaCO3/L | 1.0 | 310.2 | a | 3/16/16 | ANP | 310.2_160318 |
NA | CORROSIVITY | -1.30 | Bi | 1.0 | SM203 | a | 3/23/16 | mmp | COR_160323A |
E-11712 | COLOR | 12 N1 | 5 | Color Units | 1.0 | SM2120 B | a | 3/15/16 | RHF | COLOR_160315 | pH: 7.5 |
E-11734 | ODOR | ND | 1 | TON | 1.0 | SM2150 | a | 3/15/16 | RHF | ODOR_160315 |
E-10173 | TOTAL DISSOLVED SOLIDS (TDS) | 128 | 10 | mg/L | 1.0 | SM2540 C | a | 3/16/16 | MMH | TDS_160316 |
E-10139 | HYDROGEN ION (pH) | 7.50 H5 | | pH Units | 1.0 | SM4500-H+ B | a | 3/15/16 | RHF | PH_160315 |
14797-55-8 | NITRATE-N | 0.90 | 0.005 | 0.002 | mg/L | 1.0 | SM4500-NO3 F | a | 3/15/16 | ANP | NO3NO2_160315 |
14265-44-2 | ORTHO-PHOSPHATE | 0.08 | 0.005 | 0.002 | mg/L | 1.0 | SM4500-P F | a | 3/15/16 | ANP | OPHO5_160315 |
NA | SURFACTANTS | ND | 0.05 | 0.05 | mg/L | 1.0 | SM5540 C | a | 3/16/16 | MJ | AME5540_160315 |
7440-70-2 | CALCIUM | 13.7 | 0.5 | 0.009 | mg/L | 1.0 | 200.7/3010A | a | 3/16/16 | BJ | 200.7_160316A |
7439-89-6 | IRON | 0.35 | 0.050 | 0.0012 | mg/L | 1.0 | 200.7/3010A | a | 3/16/16 | BJ | 200.7_160316A |
7439-96-5 | MANGANESE | 0.010 | 0.001 | 0.0002 | mg/L | 1.0 | 200.7/3010A | a | 3/16/16 | BJ | 200.7_160316A |
7440-38-2 | ARSENIC | 0.00015 J | 0.0005 | 8.11E-05 | mg/L | 1.0 | 200.8/3010A | a | 3/16/16 | MVP | 200.8_160316WW |
7440-39-3 | BARIUM | 0.017 | 0.001 | 0.00014 | mg/L | 1.0 | 200.8/3010A | a | 3/16/16 | MVP | 200.8_160316WW |
7440-43-9 | CADMIUM | ND | 0.00025 | 8.11E-05 | mg/L | 1.0 | 200.8/3010A | a | 3/16/16 | MVP | 200.8_160316WW |
7440-47-3 | CHROMIUM | ND | 0.001 | 0.00011 | mg/L | 1.0 | 200.8/3010A | a | 3/16/16 | MVP | 200.8_160316WW |
7440-50-8 | COPPER | 0.0014 J | 0.002 | 8.63E-05 | mg/L | 1.0 | 200.8/3010A | a | 3/16/16 | MVP | 200.8_160316WW |
7439-92-1 | LEAD | 0.00029 J | 0.0005 | 0.00012 | mg/L | 1.0 | 200.8/3010A | a | 3/16/16 | MVP | 200.8_160316WW |
7782-49-2 | SELENIUM | ND | 0.001 | 0.00022 | mg/L | 1.0 | 200.8/3010A | a | 3/16/16 | MVP | 200.8_160316WW |

Notes:

- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

If you have any questions concerning this report contact us at the above phone number.

Form: rResult.rpt
Data Report

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Comp.</th>
<th>Method</th>
<th>Dilution</th>
<th>MDL</th>
<th>PQL</th>
<th>Result</th>
<th>CLD</th>
<th>DN</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0026</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>E. Coli</td>
<td></td>
<td>79.4</td>
<td>1</td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td></td>
<td>>2419.6</td>
<td>1</td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.085</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F/SM4500-P B(5)</td>
<td>a</td>
<td>3/17/16</td>
</tr>
</tbody>
</table>

Notes:

- **ND** = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- **PQL** = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **D.F.** = Dilution Factor

Form: cResult.rpt
<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10177</td>
<td>TURBIDITY</td>
<td>5.61</td>
<td>0.10</td>
<td></td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>RHF</td>
<td>Turb_160315</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>MMH</td>
<td>160321</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>3.1</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MMH</td>
<td>I160315A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MMH</td>
<td>I160315A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>8.8</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>MMH</td>
<td>I160315A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>68.6</td>
<td>5.0</td>
<td></td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>ANP</td>
<td>310.2_160318</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.0</td>
<td></td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>ANP</td>
<td>310.2_160318</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-1.77</td>
<td></td>
<td></td>
<td>SI</td>
<td>1.0</td>
<td>SM203</td>
<td>mvp</td>
<td>COR_160322A</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>6 N1</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>RHF</td>
<td>COLOR_160315</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>RHF</td>
<td>ODOR_160315</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>133</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>MMH</td>
<td>TDS_160316</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>6.92 H5</td>
<td></td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>RHF</td>
<td>PH_160315</td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>1.42</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-NO3 F</td>
<td>ANP</td>
<td>NO3NO2_160315</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.07</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>ANP</td>
<td>OPHOS_160315</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5440 C</td>
<td>MJ</td>
<td>AMTE5440_160311</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>16.1</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>BJ</td>
<td>200.7_160316A</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.48</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>BJ</td>
<td>200.7_160316A</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.016</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>BJ</td>
<td>200.7_160316A</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00024 J</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>MVP</td>
<td>200.8_160316Ww</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.016</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>MVP</td>
<td>200.8_160316Ww</td>
<td></td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>MVP</td>
<td>200.8_160316Ww</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>MVP</td>
<td>200.8_160316Ww</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0016 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>MVP</td>
<td>200.8_160316Ww</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.0006</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>MVP</td>
<td>200.8_160316Ww</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>MVP</td>
<td>200.8_160316Ww</td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>MVP</td>
<td>200.8_160316Ww</td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0028</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>MVP</td>
<td>200.8_160316Ww</td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1.0</td>
<td>1</td>
<td>MPN/10^6/mL</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>CLH</td>
<td>qt_160315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>27.2</td>
<td>1</td>
<td>MPN/10^6/mL</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>CLH</td>
<td>qt_160315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.052</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P</td>
<td>ANP</td>
<td>TPHOS_160330</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor
<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Sample Comment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>0.49</td>
<td>0.10</td>
<td>NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>3/15/16</td>
<td>RHF TURB_160315</td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>3/21/16</td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>6.6</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>16.0</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>98.6</td>
<td>5.0</td>
<td></td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.0</td>
<td></td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIONITY</td>
<td>-1.41</td>
<td></td>
<td></td>
<td>Si</td>
<td>1.0</td>
<td>SM203</td>
<td>a</td>
<td>3/23/16</td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>a</td>
<td>3/15/16</td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>3/15/16</td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>193</td>
<td>10</td>
<td></td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>6.93 H5</td>
<td></td>
<td></td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>3/15/16</td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>2.22</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5450 NO3</td>
<td>a</td>
<td>3/15/16</td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.08</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500</td>
<td>a</td>
<td>3/15/16</td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5440 C</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>25.3</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.06</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.002</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00025 J</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.029</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.00001</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0008 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>0.00024 J</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0013 J</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>E. Coli</td>
<td></td>
<td><1.0</td>
<td>1</td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td></td>
<td>1.0</td>
<td>1</td>
<td></td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B.2.b/Colilert-18</td>
<td>a</td>
<td>3/16/16</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.067</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P</td>
<td>a</td>
<td>3/17/16</td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor

Form: dResult.rpt
Data Report

Sample Description: Last Chance - GW-158

Lab Number: 12864
Sample Comment:
Sample Date: 3/14/16 10:50 am
Collected By: Steven Patten

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Analyzed</th>
<th>Analyst</th>
<th>Batch</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>1.47</td>
<td>0.10</td>
<td>NTU</td>
<td>1.0</td>
<td></td>
<td>180.1</td>
<td>a</td>
<td>3/15/16</td>
<td>RHF</td>
<td>TURB_160315</td>
<td></td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>3/21/16</td>
<td>MMH</td>
<td>245.1_160321</td>
<td></td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>2.8</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>3/16/16</td>
<td>MMH</td>
<td>160315A</td>
<td></td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>3/16/16</td>
<td>MMH</td>
<td>160315A</td>
<td></td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>7.8</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>3/16/16</td>
<td>MMH</td>
<td>160315A</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>96.3</td>
<td>5.0</td>
<td></td>
<td>mg CaCO₃/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>3/18/16</td>
<td>ANP</td>
<td>310.2_160318</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.0</td>
<td></td>
<td>mgCaCO₃/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>3/18/16</td>
<td>ANP</td>
<td>310.2_160318</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIIVITY</td>
<td>-1.52</td>
<td></td>
<td></td>
<td>Si</td>
<td>1.0</td>
<td>SM203</td>
<td>a</td>
<td>3/23/16</td>
<td>msp</td>
<td>COR_16023A</td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND</td>
<td>5</td>
<td></td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>a</td>
<td>3/15/16</td>
<td>RHF</td>
<td>COLOR_160315</td>
<td>pH: 7.0</td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td></td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>3/15/16</td>
<td>RHF</td>
<td>ODOR_160315</td>
<td>Temperature: 39.0</td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>166</td>
<td>10</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>3/16/16</td>
<td>MMH</td>
<td>TDS_160316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>6.93</td>
<td>H5</td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H⁺ B</td>
<td>a</td>
<td>3/15/16</td>
<td>RHF</td>
<td>PH_160315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>1.60</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-No3 F</td>
<td>a</td>
<td>3/15/16</td>
<td>ANP</td>
<td>NO3_160315</td>
<td></td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.08</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>3/15/16</td>
<td>ANP</td>
<td>OPHOS_160315</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM540 C</td>
<td>a</td>
<td>3/16/16</td>
<td>MJ</td>
<td>AMTESS_160311</td>
<td></td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>20.1</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>BJ</td>
<td>200.7_160316A</td>
<td></td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.11</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>BJ</td>
<td>200.7_160316A</td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.006</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>BJ</td>
<td>200.7_160316A</td>
<td></td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00025</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP</td>
<td>200.8_160316WW</td>
<td></td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.028</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP</td>
<td>200.8_160316WW</td>
<td></td>
</tr>
<tr>
<td>7440-43-3</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP</td>
<td>200.8_160316WW</td>
<td></td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP</td>
<td>200.8_160316WW</td>
<td></td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0003</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP</td>
<td>200.8_160316WW</td>
<td></td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>ND</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP</td>
<td>200.8_160316WW</td>
<td></td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP</td>
<td>200.8_160316WW</td>
<td></td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP</td>
<td>200.8_160316WW</td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0035</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP</td>
<td>200.8_160316WW</td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td><1.0</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B₂.₂/Colilert-18</td>
<td>a</td>
<td>3/16/16</td>
<td>CLH</td>
<td>qC_160315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>3.0</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>SM9223 B₂.₂/Colilert-18</td>
<td>a</td>
<td>3/16/16</td>
<td>CLH</td>
<td>qC_160315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.077</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P/F/SM4500-P B(6)</td>
<td>a</td>
<td>3/17/16</td>
<td>ANP</td>
<td>TPHOS_160317</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

Reference Number: 16-05523
Report Date: 3/30/16
Data Report

<table>
<thead>
<tr>
<th>CAS ID#</th>
<th>Parameter</th>
<th>Result</th>
<th>PQL</th>
<th>MDL</th>
<th>Units</th>
<th>DF</th>
<th>Method</th>
<th>Lab</th>
<th>Sample Date</th>
<th>Sample Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-10617</td>
<td>TURBIDITY</td>
<td>5.04</td>
<td>0.1</td>
<td>NTU</td>
<td>1.0 NTU</td>
<td>1.0</td>
<td>180.1</td>
<td>a</td>
<td>3/15/16</td>
<td>RHF, TURB_160315</td>
</tr>
<tr>
<td>7439-97-6</td>
<td>MERCURY</td>
<td>ND</td>
<td>0.0002</td>
<td>1.40E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>245.1</td>
<td>a</td>
<td>3/15/16</td>
<td>MMH, MERCURY_160321</td>
</tr>
<tr>
<td>16887-00-6</td>
<td>CHLORIDE</td>
<td>10.7</td>
<td>0.1</td>
<td>0.0043</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>3/16/16</td>
<td>MMH, CHLORIDE_160315</td>
</tr>
<tr>
<td>16984-48-8</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>0.1</td>
<td>0.0049</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>3/16/16</td>
<td>MMH, FLUORIDE_160315</td>
</tr>
<tr>
<td>14808-79-8</td>
<td>SULFATE</td>
<td>32.0</td>
<td>0.2</td>
<td>0.0087</td>
<td>mg/L</td>
<td>1.0</td>
<td>300.0</td>
<td>a</td>
<td>3/16/16</td>
<td>MMH, SULFATE_160315</td>
</tr>
<tr>
<td>NA</td>
<td>BICARBONATE</td>
<td>111</td>
<td>5.0</td>
<td>mg CaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>3/16/16</td>
<td>ANP, BICARBONATE_160318</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CARBONATE</td>
<td>ND</td>
<td>5.0</td>
<td>mgCaCO3/L</td>
<td>1.0</td>
<td>310.2</td>
<td>a</td>
<td>3/16/16</td>
<td>ANP, CARBONATE_160318</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>CORROSIVITY</td>
<td>-1.25</td>
<td>SI</td>
<td>1.0</td>
<td>Si</td>
<td>3/23/16</td>
<td>a</td>
<td>mep COR_160323A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-11712</td>
<td>COLOR</td>
<td>ND N1</td>
<td>5</td>
<td>Color Units</td>
<td>1.0</td>
<td>SM2120 B</td>
<td>a</td>
<td>3/16/16</td>
<td>RHF, COLOR_160315</td>
<td></td>
</tr>
<tr>
<td>E-11734</td>
<td>ODOR</td>
<td>ND</td>
<td>1</td>
<td>TON</td>
<td>1.0</td>
<td>SM2150</td>
<td>a</td>
<td>3/15/16</td>
<td>RHF, ODOR_160315</td>
<td></td>
</tr>
<tr>
<td>E-10173</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>254</td>
<td>10</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM2540 C</td>
<td>a</td>
<td>3/16/16</td>
<td>MMH, TDS_160316</td>
<td></td>
</tr>
<tr>
<td>E-10139</td>
<td>HYDROGEN ION (pH)</td>
<td>6.95 H5</td>
<td>0.005</td>
<td>0.002</td>
<td>pH Units</td>
<td>1.0</td>
<td>SM4500-H+ B</td>
<td>a</td>
<td>3/16/16</td>
<td>RHF, PH_160315</td>
</tr>
<tr>
<td>14797-55-8</td>
<td>NITRATE-N</td>
<td>3.26</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-N03 F</td>
<td>a</td>
<td>3/16/16</td>
<td>ANP, NO3N02_160315</td>
</tr>
<tr>
<td>14265-44-2</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.09</td>
<td>0.005</td>
<td>0.002</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F</td>
<td>a</td>
<td>3/16/16</td>
<td>ANP, PHOS_160315</td>
</tr>
<tr>
<td>NA</td>
<td>SURFACTANTS</td>
<td>ND</td>
<td>0.05</td>
<td>0.05</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM5450 C</td>
<td>a</td>
<td>3/16/16</td>
<td>MJ, AMTESS450_16031F</td>
</tr>
<tr>
<td>7440-70-2</td>
<td>CALCIUM</td>
<td>32.3</td>
<td>0.5</td>
<td>0.009</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>BJ, 200.7_160316A</td>
</tr>
<tr>
<td>7439-89-6</td>
<td>IRON</td>
<td>0.54</td>
<td>0.050</td>
<td>0.0012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>BJ, 200.7_160316A</td>
</tr>
<tr>
<td>7439-96-5</td>
<td>MANGANESE</td>
<td>0.009</td>
<td>0.001</td>
<td>0.0002</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.7/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>BJ, 200.7_160316A</td>
</tr>
<tr>
<td>7440-38-2</td>
<td>ARSENIC</td>
<td>0.00037 J</td>
<td>0.0005</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP, ARSENIC_160316</td>
</tr>
<tr>
<td>7440-39-3</td>
<td>BARIUM</td>
<td>0.041</td>
<td>0.001</td>
<td>0.00014</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP, BARIUM_160316</td>
</tr>
<tr>
<td>7440-43-9</td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.00025</td>
<td>8.11E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP, CADMIUM_160316</td>
</tr>
<tr>
<td>7440-47-3</td>
<td>CHROMIUM</td>
<td>0.0003 J</td>
<td>0.001</td>
<td>0.00011</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP, CHROMIUM_160316</td>
</tr>
<tr>
<td>7440-50-8</td>
<td>COPPER</td>
<td>0.0004 J</td>
<td>0.002</td>
<td>8.63E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP, COPPER_160316</td>
</tr>
<tr>
<td>7439-92-1</td>
<td>LEAD</td>
<td>0.00014 J</td>
<td>0.0005</td>
<td>0.00012</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP, LEAD_160316</td>
</tr>
<tr>
<td>7782-49-2</td>
<td>SELENIUM</td>
<td>0.00024 J</td>
<td>0.001</td>
<td>0.00022</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP, SELENIUM_160316</td>
</tr>
<tr>
<td>7440-22-4</td>
<td>SILVER</td>
<td>ND</td>
<td>0.0002</td>
<td>6.30E-05</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP, SILVER_160316</td>
</tr>
<tr>
<td>7440-66-6</td>
<td>ZINC</td>
<td>0.0015 J</td>
<td>0.0025</td>
<td>0.00047</td>
<td>mg/L</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>a</td>
<td>3/16/16</td>
<td>MVP, ZINC_160316</td>
</tr>
<tr>
<td>E. Coli</td>
<td><1.0</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>B.2/bColilert-18</td>
<td>a</td>
<td>3/16/16</td>
<td>CLH, qCol_160315</td>
</tr>
<tr>
<td>TOTAL COLIFORM</td>
<td>2.0</td>
<td>1</td>
<td>MPN/100mL</td>
<td>1.0</td>
<td>1.0</td>
<td>200.8/3010A</td>
<td>B.2/bColilert-18</td>
<td>a</td>
<td>3/16/16</td>
<td>CLH, qCol_160315</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.093</td>
<td>0.010</td>
<td>0.003</td>
<td>mg/L</td>
<td>1.0</td>
<td>SM4500-P F/SM5400-P B(6)</td>
<td>a</td>
<td>3/17/16</td>
<td>ANP, TPHOS_160317</td>
</tr>
</tbody>
</table>

Notes:
- ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. = Dilution Factor

Form: dResult.rpt
DATA REPORT

General Information
- **Client Name:** Walla Walla Basin Watershed Council
- **Client Address:** 810 South Main Street, Milton-Freewater, OR 97862
- **Lab Number:** 12865
- **Field ID:** Last Chance
- **Sample Description:** GW-159
- **Matrix:** Water
- **Sample Date:** 3/14/16
- **Extraction Date:** 3/16/16
- **Extraction Method:** 3535

Analytical Data

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.013</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.**
- **ND** = indicates the compound was not detected above the PQL or MDL.
- **PQL** = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- **D.F.** = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number:</th>
<th>12865</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field ID:</td>
<td>Last Chance</td>
</tr>
<tr>
<td>Sample Description:</td>
<td>GW-159</td>
</tr>
<tr>
<td>Matrix:</td>
<td>Water</td>
</tr>
<tr>
<td>Sample Date:</td>
<td>3/14/16</td>
</tr>
<tr>
<td>Extraction Date:</td>
<td>3/18/16</td>
</tr>
<tr>
<td>Extraction Method:</td>
<td>3510C</td>
</tr>
</tbody>
</table>

Reference Number: 16-05523
Project: Aquifer Recharge Water and Soil

Report Date: 3/30/16
Date Analyzed: 3/21/16
Analyst: KAH
Analytical Method: 8151A
Batch: 8151W_160318
Approved By: pdm.rjk

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12865
Field ID: Last Chance
Sample Description: GW-159
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/15/16
Extraction Method: 5030B

Reference Number: 16-05523
Project: Aquifer Recharge Water and Soil

Report Date: 3/30/16
Date Analyzed: 3/15/16
Analyst: HY
Batch: 8260W_160315
Approved By: pdm.rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. = Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1, 2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1, 2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.0</td>
<td>1.0</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12864
Field ID: Last Chance
Sample Description: GW-158
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/16/16
Extraction Method: 3535

- Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'- DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'- DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'- DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE ''B''</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12864
Field ID: Last Chance
Sample Description: GW-158
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/18/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2, 4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2, 4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2, 4, 5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2, 4, 5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3, 5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12864
Field ID: Last Chance
Sample Description: GW-158
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/15/16
Extraction Method: 5030B

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBromo-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3 - DICHLOROPROPAINE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1, 2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLENENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYL TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYL BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td>Screening Only</td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOluene</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1, 2 - DICHLOOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12863
Field ID: Last Chance
Sample Description: GW-149
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/16/16
Extraction Method: 3535

Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4'-DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4'-DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4'-DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>a</td>
<td>W</td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-4</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55338-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-1</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PCLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12863
Field ID: Last Chance
Sample Description: GW-149
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/15/16
Extraction Method: 5030B

Reference Number: 16-05523
Project: Aquifer Recharge Water and Soil

Report Date: 3/30/16
Date Analyzed: 3/15/16
Analyzer: HY
Analytical Method: 8260C
Batch: 8260W_160315
Approved By: pdm.rjk

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROTHENYLENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>NA</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1, 2 - DICHLOROTHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1, 3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLEN B ENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1, 2 - DICHLOROTHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1, 3 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND = indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. = Dilution Factor.
Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12862
Field ID: Last Chance
Sample Description: GW-148
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/16/16
Extraction Method: 3535

- Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12862
Field ID: Last Chance
Sample Description: GW-148
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/18/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-6</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-80-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12862
Field ID: Last Chance
Sample Description: GW-148
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/15/16
Extraction Method: 5030B

Reference Number: Project: Aquifer Recharge Water and Soil

Report Date: 3/30/16
Date Analyzed: 3/15/16
Analyst: HY
Analytical Method: 8260C
Batch: 8260W_160315
Approved By: pdm, rjk

Authorized by: Lawrence J Henderson, PhD
Director of Laboratories, Vice President

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-34-3</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563-58-6</td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-20-6</td>
<td>1,1,1,2 - TETRAHCLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2 - TETRAHCLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-DIBromo-3-CHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.17</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-28-9</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>594-20-7</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.22</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>BENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-86-1</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-97-5</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>BROMOFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.2</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.3</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

Notes:

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1, 2 - DICHLOOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-t</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M,P- XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYLTOluene</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYL BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-1</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1,2 - DICHLOOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-t</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

MDL = Detection Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.
DATA REPORT

Project Details

Client Name: Walla Walla Basin Watershed Council
Address: 810 South Main Street, Milton-Freewater, OR 97862

Lab Number: 12861
Field ID: Last Chance
Sample Description: Intake
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/16/16
Extraction Method: 3535

Reference Number: 16-05523
Project: Aquifer Recharge Water and Soil

Report Date: 3/30/16
Date Analyzed: 3/17/16
Analyst: CO
Batch: 8081B_160316
Approved By: pdm.rjk

Authorized by: Lawrence J Henderson, PhD
Director of Laboratories, Vice President

Organochlorine Pesticides

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-00-2</td>
<td>ALDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-84-6</td>
<td>BHC, ALPHA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-85-7</td>
<td>BHC, BETA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.008</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>58-89-9</td>
<td>LINDANE (BHC - GAMMA)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>319-86-8</td>
<td>BHC, DELTA -</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.006</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-71-9</td>
<td>ALPHA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5103-74-2</td>
<td>GAMMA-CHLORDANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.007</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>50-29-3</td>
<td>4,4' - DDT</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-55-9</td>
<td>4,4' - DDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-54-8</td>
<td>4,4' - DDD</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>60-57-1</td>
<td>DIELDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>959-98-8</td>
<td>ENDOSULFAN I</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>33213-65-1</td>
<td>ENDOSULFAN II</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1031-07-8</td>
<td>ENDOSULFAN SULFATE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-20-8</td>
<td>ENDRIN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.1</td>
<td>0.009</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>7421-93-4</td>
<td>ENDRIN ALDEHYDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>53494-70-1</td>
<td>ENDRIN KETONE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>76-44-8</td>
<td>HEPTACHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1024-57-3</td>
<td>HEPTACHLOR EPOXIDE "B"</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>72-43-5</td>
<td>METHOXYCHLOR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>8001-35-2</td>
<td>TOXAPHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

Lab Number: 12861
Field ID: Last Chance
Sample Description: Intake
Matrix: Water
Sample Date: 3/14/16
Extraction Date: 3/18/16
Extraction Method: 3510C

<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50594-66-1</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>55336-06-3</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>94-82-6</td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.8</td>
<td>0.8</td>
<td>0.32</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-72-1</td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>75-99-0</td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.3</td>
<td>1.3</td>
<td>0.49</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-00-9</td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>120-36-5</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>88-85-7</td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>87-86-5</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>51-36-5</td>
<td>3,5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>25057-89-4</td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>133-90-4</td>
<td>CHLORAMBEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.03</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1861-32-1</td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1918-02-1</td>
<td>PCLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04</td>
<td>1.00</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
ND - indicates the compound was not detected above the PQL or MDL.
PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.

Form: c608.rpt
DATA REPORT

Client Name: Walla Walla Basin Watershed Council
810 South Main Street
Milton-Freewater, OR 97862

<table>
<thead>
<tr>
<th>Lab Number: 12861</th>
<th>Field ID: Last Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Description: Intake</td>
<td></td>
</tr>
<tr>
<td>Matrix: Water</td>
<td></td>
</tr>
<tr>
<td>Sample Date: 3/14/16</td>
<td></td>
</tr>
<tr>
<td>Extraction Date: 3/15/16</td>
<td></td>
</tr>
<tr>
<td>Extraction Method: 5030B</td>
<td></td>
</tr>
</tbody>
</table>

Reference Number: **16-05523**
Project: Aquifer Recharge Water and Soils

Report Date: 3/30/16
Date Analyzed: 3/15/16
Analyst: HY
Analytical Method: 8260C
Batch: 8260W_160315
Approved By: pdm.rj

Authorized by:
Lawrence J Henderson, PhD
Director of Laboratories, Vice President

CAS Compound RESULT Flag UNITS PQL MRL MDL D.F. Lab COMMENT

75-34-3	1,1 - DICHLOROETHANE	ND	ug/L	0.4	0.11	1.00	a
75-35-4	1,1 - DICHLOROETHYLENE	ND	ug/L	0.4	0.13	1.00	a
563-58-6	1,1 - DICHLOROPROPENE	ND	ug/L	0.4	0.13	1.00	a
71-55-6	1,1,1 - TRICHLOROETHANE	ND	ug/L	0.1	0.16	1.00	a
630-20-6	1,1,1,2 - TETRACHLOROETHANE	ND	ug/L	0.4	0.11	1.00	a
79-00-5	1,1,2 - TRICHLOROETHANE	ND	ug/L	0.4	0.11	1.00	a
79-34-5	1,1,2,2 - TETRACHLOROETHANE	ND	ug/L	0.4	0.15	1.00	a
95-50-1	1,2 - DICHLOROBENZENE (ortho)	ND	ug/L	0.4	0.08	1.00	a
107-06-2	1,2 - DICHLOROETHANE	ND	ug/L	0.4	0.11	1.00	a
78-87-5	1,2 - DICHLOROPROPANE	ND	ug/L	0.4	0.11	1.00	a
87-61-6	1,2,3 - TRICHLOROBENZENE	ND	ug/L	0.4	0.08	1.00	a
96-18-4	1,2,3 - TRICHLOROPROPANE	ND	ug/L	0.4	0.09	1.00	a
120-82-1	1,2,4 - TRICHLOROBENZENE	ND	ug/L	0.4	0.13	1.00	a
95-63-6	1,2,4 - TRIMETHYL BENZENE	ND	ug/L	0.4	0.09	1.00	a
96-12-8	1,2-DIBROMO-3-CHLOROPROPAINE	ND	ug/L	1.0	0.17	1.00	a
541-73-1	1,3 - DICHLOROBENZENE (meta)	ND	ug/L	0.4	0.07	1.00	a
142-28-9	1,3 - DICHLOROPROPANE	ND	ug/L	0.4	0.09	1.00	a
108-67-8	1,3,5 - TRIMETHYL BENZENE	ND	ug/L	0.4	0.09	1.00	a
106-46-7	1,4 - DICHLOROBENZENE (para)	ND	ug/L	0.4	0.06	1.00	a
594-20-7	2,2 - DICHLOROPROPANE	ND	ug/L	0.4	0.22	1.00	a
71-43-2	BENZENE	ND	ug/L	0.4	0.16	1.00	a
108-86-1	BROMOBENZENE	ND	ug/L	0.4	0.09	1.00	a
74-97-5	BROMOCHLOROMETHANE	ND	ug/L	0.4	0.09	1.00	a
75-27-4	BROMODICHLOROMETHANE	ND	ug/L	0.4	0.13	1.00	a
75-25-2	BROMOFORM	ND	ug/L	0.4	0.2	1.00	a
74-83-9	BROMOMETHANE	ND	ug/L	0.4	0.3	1.00	a
56-23-5	CARBON TETRACHLORIDE	ND	ug/L	0.4	0.14	1.00	a

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor.

If you have any questions concerning this report contact us at the above phone number.
<table>
<thead>
<tr>
<th>CAS</th>
<th>Compound</th>
<th>RESULT</th>
<th>Flag</th>
<th>UNITS</th>
<th>PQL</th>
<th>MRL</th>
<th>MDL</th>
<th>D.F.</th>
<th>Lab</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>108-90-7</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.29</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>CIS - 1, 2 - DICHLOOROTANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-01-1</td>
<td>CIS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.06</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124-48-1</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74-95-3</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>DICHLOORODIFLUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.23</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.16</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-20-7</td>
<td>M.P- XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.21</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.28</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104-51-8</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103-65-1</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>1.0</td>
<td>0.15</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-49-8</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.08</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>O - XYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-43-4</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-87-6</td>
<td>P - ISOPROPYL TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.1</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-98-8</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>STYRENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.07</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98-06-6</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>TOLUENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.12</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>TRANS - 1, 2 - DICHLOOROTANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.14</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10061-02-1</td>
<td>TRANS - 1,3 - DICHLOOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.11</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.09</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>TRICHLOROFUOROMETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.18</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>0.4</td>
<td>0.13</td>
<td>1.00</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.
- ND - indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be achieved within specified limits of precision and accuracy during routine laboratory operating conditions.
- D.F. - Dilution Factor.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Calibration Check

Reference Number: 16-05523
Report Date: 03/30/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160316A</td>
<td>CALCIUM</td>
<td>10.2</td>
<td>11</td>
<td>mg/L</td>
<td>200.7</td>
<td>93</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>1.01</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>101</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>1.04</td>
<td>1</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td>ARSENIC</td>
<td>0.00099</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.00103</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.00099</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.00098</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>98</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.00106</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>106</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.001</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.00099</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>99</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.00103</td>
<td>0.001</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160321</td>
<td>MERCURY</td>
<td>0.00203</td>
<td>0.00200</td>
<td>mg/L</td>
<td>245.1</td>
<td>102</td>
<td>95-105</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MERCURY</td>
<td>0.000191</td>
<td>0.000200</td>
<td>mg/L</td>
<td>245.1</td>
<td>96</td>
<td>95-105</td>
<td>CAL</td>
<td>MRL</td>
<td></td>
</tr>
<tr>
<td>I160315A</td>
<td>CHLORIDE</td>
<td>1.0</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>100</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>0.97</td>
<td>1</td>
<td>mg/L</td>
<td>300.0</td>
<td>97</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>1.9</td>
<td>2</td>
<td>mg/L</td>
<td>300.0</td>
<td>95</td>
<td>90-110</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160315</td>
<td>ORTHO-PHOSPHATE</td>
<td>1.03</td>
<td>1.00</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>103</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH_160315</td>
<td>HYDROGEN ION (pH)</td>
<td>7.98</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HYDROGEN ION (pH)</td>
<td>7.99</td>
<td>8.00</td>
<td>pH Units</td>
<td>SM4500-H+ B</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160317</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.105</td>
<td>0.100</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>105</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160330</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.102</td>
<td>0.100</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>102</td>
<td>85-115</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160315</td>
<td>TURBIDITY</td>
<td>10.0</td>
<td>10.0</td>
<td>NTU</td>
<td>180.1</td>
<td>100</td>
<td>80-120</td>
<td>CAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank
Reference Number: 16-05523
Report Date: 03/30/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>QC Limits</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160316A</td>
<td>CALCIUM</td>
<td>12.6</td>
<td>13</td>
<td>mg/L</td>
<td>200.7</td>
<td>97</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>0.51</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>102</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>0.51</td>
<td>0.5</td>
<td>mg/L</td>
<td>200.7</td>
<td>102</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160316Wv</td>
<td>ARSENIC</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.027</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>108</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.027</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>108</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.026</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>104</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.023</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>92</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.0126</td>
<td>0.0125</td>
<td>mg/L</td>
<td>200.8</td>
<td>101</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.024</td>
<td>0.025</td>
<td>mg/L</td>
<td>200.8</td>
<td>96</td>
<td>85-115</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.1_160321</td>
<td>MERCURY</td>
<td>0.00170</td>
<td>0.00167</td>
<td>mg/L</td>
<td>245.1</td>
<td>102</td>
<td>90-110</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160318</td>
<td>2,4 - D</td>
<td>2.1</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>105</td>
<td>60-120</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>9.8</td>
<td>8</td>
<td>ug/L</td>
<td>8151A</td>
<td>123</td>
<td>49-136</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>1.1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>110</td>
<td>68-122</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>62-128</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>0.76</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>76</td>
<td>65-125</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>2</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>67-121</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>12.9</td>
<td>13</td>
<td>ug/L</td>
<td>8151A</td>
<td>99</td>
<td>53-142</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>66-126</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>3.1</td>
<td>3</td>
<td>ug/L</td>
<td>8151A</td>
<td>103</td>
<td>63-123</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>1.6</td>
<td>2</td>
<td>ug/L</td>
<td>8151A</td>
<td>80</td>
<td>73-127</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>69-123</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>0.8</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>80</td>
<td>48-114</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>0.52</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>52</td>
<td>48-168</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICLOPYR</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>8151A</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,1 - DICHLOROETHANE</td>
<td>4.5</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC</th>
<th>QC Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160315</td>
<td>1,1-DICHLOROETHYLENE</td>
<td>4.6</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,1-DICHLOROPROPENE</td>
<td>4.5</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,1,1-TRICHLOROETHANE</td>
<td>4.6</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,1,1,2-TETRACHLOROETHANE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2-DICHLOROBENZENE (ortho)</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2-DICHLOROETHANE</td>
<td>4.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2-DICHLOROPROPANE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2,3-TRICHLOROBENZENE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2,3-TRICHLOROPROPANE</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2,4-TRICHLOROBENZENE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2,4-TRIMETHYLBENZENE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2-DIBROMO-3-CHLOROPROPANE</td>
<td>4.1</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,3-DICHLOROBENZENE (meta)</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,3-DICHLOROPROPANE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,3,5-TRIMETHYLBENZENE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,4-DICHLOROBENZENE (para)</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>2,2-DICHLOROPROPANE</td>
<td>4.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>120</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BENZENE</td>
<td>4.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMOBENZENE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMOCHLOROMETHANE</td>
<td>4.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>118</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMODICHLOROMETHANE</td>
<td>3.9</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>98</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMOFORM</td>
<td>3.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>93</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMOMETHANE</td>
<td>4.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>120</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CARBON TETRACHLORIDE</td>
<td>4.7</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>118</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CHLOROBENZENE</td>
<td>4.2</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CHLOROETHANE</td>
<td>3.5</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>88</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CHLOROFORM</td>
<td>4.0</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CHLOROMETHANE</td>
<td>4.8</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>120</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>4.3</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>4.4</td>
<td>4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value (ug/L)</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160315</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>4.0</td>
<td>ug/L</td>
<td>8260C</td>
<td>100</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIBROMOMETHANE</td>
<td>4.5</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>5.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>130</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETHYLBENZENE</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEXACHLOROBUTADIENE</td>
<td>4.6</td>
<td>ug/L</td>
<td>8260C</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOPROPYLBENZENE</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M,P-XYLENE</td>
<td>8.7</td>
<td>ug/L</td>
<td>8260C</td>
<td>109</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>4.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>120</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METHYLENE CHLORIDE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-BUTYLBENZENE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-PROPYLBENZENE</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHALENE</td>
<td>4.2</td>
<td>ug/L</td>
<td>8260C</td>
<td>105</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O-CHLOROTOLUENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O-XYLENE</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-CHLOROTOLUENE</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-ISOPROPYLTOLUENE</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEC-BUTYLBENZENE</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STYRENE</td>
<td>4.1</td>
<td>ug/L</td>
<td>8260C</td>
<td>103</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERT-BUTYLBENZENE</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TETRACHLOROETHYLENE</td>
<td>4.8</td>
<td>ug/L</td>
<td>8260C</td>
<td>120</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOLUENE</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,2-DICHLOROETHENE</td>
<td>4.5</td>
<td>ug/L</td>
<td>8260C</td>
<td>113</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANS - 1,3-DICHLOROPROPENE</td>
<td>4.3</td>
<td>ug/L</td>
<td>8260C</td>
<td>108</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROETHENE</td>
<td>4.4</td>
<td>ug/L</td>
<td>8260C</td>
<td>110</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>4.6</td>
<td>ug/L</td>
<td>8260C</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VINYL CHLORIDE</td>
<td>4.6</td>
<td>ug/L</td>
<td>8260C</td>
<td>115</td>
<td>70-130</td>
<td>LFB</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Laboratory Reagent Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160316A</td>
<td>CALCULUM</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td>200.7</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.7_160316A</td>
<td>MANGANESE</td>
<td>ND</td>
<td>200.7</td>
<td>mg/L</td>
<td>200.7</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>ARSENIC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>BARIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>CADMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>CHROMIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>COPPER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>LEAD</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>SELENIUM</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>SILVER</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>ZINC</td>
<td>ND</td>
<td>200.8</td>
<td>mg/L</td>
<td>200.8</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>245.1_160321</td>
<td>MERCURY</td>
<td>ND</td>
<td>245.1</td>
<td>mg/L</td>
<td>245.1</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>I160315A</td>
<td>CHLORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td>300.0</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>I160315A</td>
<td>FLUORIDE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td>300.0</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>I160315A</td>
<td>SULFATE</td>
<td>ND</td>
<td>300.0</td>
<td>mg/L</td>
<td>300.0</td>
<td>0</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160315</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160317</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160330</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>LRB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

- % Recovery = (Result of Analysis)/(True Value) * 100
- NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>QC Type</th>
<th>Qualifier</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160316A</td>
<td>CALCIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRON</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.7</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8_160316Wv</td>
<td>ARSENIC</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>ND</td>
<td></td>
<td>mg/L</td>
<td>200.8</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160318</td>
<td>2,4 - D</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICLOPYR</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8151A</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,1 - DICHLOROETHANE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROETHYLENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 - DICHLOROPROPENE</td>
<td>ND</td>
<td></td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
</tbody>
</table>

Notation:

% Recovery = \(\frac{\text{Result of Analysis}}{\text{True Value}} \times 100 \)

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QCIndependent3.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160315</td>
<td>1,1,1 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,1,1,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,1,2 - TRICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,1,2,2 - TETRACHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2 - DICHLOROBENZENE (ortho)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2 - DICHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2,3 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2,3 - TRICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2,4 - TRICHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2,4 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,2,4-DIBROMO-3-CHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,3 - DICHLOROBENZENE (meta)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,3 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,3,5 - TRIMETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>1,4 - DICHLOROBENZENE (para)</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>2,2 - DICHLOROPROPANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMOBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMOFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CHLOROFORM</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CIS - 1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>CIS - 1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>DIBROMOMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8260W_160315</td>
<td>DICHLORODIFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>ETHYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>HEXACHLOROBUTADIENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>ISOPROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>M,P-XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>METHYL TERT-BUTYL ETHER</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>N - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>N - PROPYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>NAPHTHALENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>O - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>O -XYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>P - CHLOROTOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>P - ISOPROPYLTOLEUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>SEC - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>STYRENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>TERT - BUTYLBENZENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>TETRACHLOROETHYLENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>TOLUENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>TRANS -1,2 - DICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>TRANS -1,3 - DICHLOROPROPENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>TRICHLOROFLUOROMETHANE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8260W_160315</td>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>ug/L</td>
<td>8260C</td>
<td>0-0</td>
<td>MB</td>
<td>TB 16-05523</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Analyses

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>Result</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>QC Type</th>
<th>QC Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPHOS_160315</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS_160316</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>ND</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>0-3</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160317</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160330</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 16-05523
Report Date: 03/30/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery Limits*</th>
<th>QC Type</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURB_160315</td>
<td>TURBIDITY</td>
<td>ND</td>
<td>NTU</td>
<td>180.1</td>
<td>0-0</td>
<td>MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: 16-05523
Report Date: 03/30/16

<table>
<thead>
<tr>
<th>Batch</th>
<th>Analyte</th>
<th>True Value</th>
<th>Units</th>
<th>Method</th>
<th>% Recovery</th>
<th>Limits*</th>
<th>Qualifier Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.7_160316A</td>
<td>IRON</td>
<td>2.08</td>
<td>mg/L</td>
<td>200.7</td>
<td>104</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANGANESE</td>
<td>2.03</td>
<td>mg/L</td>
<td>200.7</td>
<td>102</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALCIUM</td>
<td>19.4</td>
<td>mg/L</td>
<td>200.7</td>
<td>97</td>
<td>95-105</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>200.8_160316W</td>
<td>ARSENIC</td>
<td>0.042</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARIUM</td>
<td>0.041</td>
<td>mg/L</td>
<td>200.8</td>
<td>103</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CADMIUM</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMIUM</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPPER</td>
<td>0.042</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD</td>
<td>0.040</td>
<td>mg/L</td>
<td>200.8</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELENIUM</td>
<td>0.042</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SILVER</td>
<td>0.019</td>
<td>mg/L</td>
<td>200.8</td>
<td>95</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZINC</td>
<td>0.042</td>
<td>mg/L</td>
<td>200.8</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>245.1_160321</td>
<td>MERCURY</td>
<td>0.00278</td>
<td>mg/L</td>
<td>245.1</td>
<td>105</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>I160315A</td>
<td>CHLORIDE</td>
<td>5.7</td>
<td>mg/L</td>
<td>300.0</td>
<td>95</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>3.76</td>
<td>mg/L</td>
<td>300.0</td>
<td>94</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SULFATE</td>
<td>28.7</td>
<td>mg/L</td>
<td>300.0</td>
<td>96</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>OPHOS_160315</td>
<td>ORTHO-PHOSPHATE</td>
<td>0.47</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>94</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TDS_160316</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>524</td>
<td>mg/L</td>
<td>SM2540 C</td>
<td>105</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160317</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TPHOS_160330</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.036</td>
<td>mg/L</td>
<td>SM4500-P F</td>
<td>100</td>
<td>90-110</td>
<td>QCS</td>
<td></td>
</tr>
<tr>
<td>TURB_160315</td>
<td>TURBIDITY</td>
<td>1.00</td>
<td>NTU</td>
<td>180.1</td>
<td>100</td>
<td>80-120</td>
<td>QCS</td>
<td></td>
</tr>
</tbody>
</table>

*Notation:
% Recovery = (Result of Analysis)/(True Value) * 100
NA = Indicates % Recovery could not be calculated.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
SAMPLE DEPENDENT QUALITY CONTROL REPORT

Duplicate, Matrix Spike/Matrix Spike Duplicate and Confirmation Result Report

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Duplicate</th>
<th>QC</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Result</td>
<td>%RPD</td>
<td>Limits</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>IRON</td>
<td>0.11</td>
<td>0.11</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>MANGANESE</td>
<td>0.006</td>
<td>0.006</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>CALCIUM</td>
<td>20.1</td>
<td>21.2</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>COPPER</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>ARSENIC</td>
<td>8.9</td>
<td>9.0</td>
<td>ug/L</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>CADMIUM</td>
<td>0.323</td>
<td>0.335</td>
<td>ug/L</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>CHROMIUM</td>
<td>1.17</td>
<td>1.12</td>
<td>ug/L</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>COPPER</td>
<td>3.9</td>
<td>4.1</td>
<td>ug/L</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>LEAD</td>
<td>0.6</td>
<td>0.5</td>
<td>ug/L</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>SELENIUM</td>
<td>3.05</td>
<td>3.3</td>
<td>ug/L</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>ZINC</td>
<td>25</td>
<td>26</td>
<td>ug/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>ARSENIC</td>
<td>0.00025</td>
<td>0.00023</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>BARIUM</td>
<td>0.028</td>
<td>0.029</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>CHROMIUM</td>
<td>0.0002</td>
<td>0.0002</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>COPPER</td>
<td>0.0003</td>
<td>0.0004</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>LEAD</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>SELENIUM</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>ZINC</td>
<td>0.0035</td>
<td>0.0029</td>
<td>mg/L</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>LEAD</td>
<td>0.515</td>
<td>0.511</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

245.1_160321

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Duplicate Result</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12985</td>
<td>ND</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13164</td>
<td>ND</td>
<td>MERCURY</td>
<td>ND</td>
<td>ND</td>
<td>mg/L</td>
<td>NA</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310.2_160318</td>
<td></td>
<td>BICARBONATE</td>
<td>62.5</td>
<td>63.4</td>
<td>mg CaCO3/l</td>
<td>1.4</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8151W_160318</td>
<td></td>
<td>2,4 - D</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4 DB</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5 T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5 - DICHLOROBENZOIC ACID</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENTAZON</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLORAMBIEN</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALAPON</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICAMBA</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DINOSEB</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PICLORAM</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL DCPA</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>ND</td>
<td>ug/L</td>
<td>NA</td>
<td>0-35</td>
<td>DUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOR_160315</td>
<td></td>
<td>COLOR</td>
<td>12</td>
<td>12</td>
<td>Color Units</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I160315A</td>
<td></td>
<td>FLUORIDE</td>
<td>0.11</td>
<td>0.11</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHLORIDE</td>
<td>3.3</td>
<td>3.3</td>
<td></td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLUORIDE</td>
<td>0.10</td>
<td>0.11</td>
<td></td>
<td>mg/L</td>
<td>9.5</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3NO2_160315</td>
<td></td>
<td>NITRATE-N</td>
<td>0.90</td>
<td>0.90</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPHOS_160315</td>
<td></td>
<td>ORTHO-PHOSPHATE</td>
<td>0.08</td>
<td>0.08</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH_160315</td>
<td></td>
<td>HYDROGEN ION (pH)</td>
<td>7.50</td>
<td>7.53</td>
<td>pH Units</td>
<td>0.4</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HYDROGEN ION (pH)</td>
<td>7.72</td>
<td>7.69</td>
<td>pH Units</td>
<td>0.4</td>
<td>0-45</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report.

Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated

Table 1: Analyte Results

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample Code</th>
<th>Analyte Description</th>
<th>Result 1</th>
<th>Result 2</th>
<th>Units</th>
<th>%RPD</th>
<th>Limits</th>
<th>Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS_160316</td>
<td>12722</td>
<td>TOTAL DISSOLVED SOLIDS (TDS)</td>
<td>221</td>
<td>223</td>
<td>mg/L</td>
<td>0.9</td>
<td>0-10</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160317</td>
<td>12861</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.085</td>
<td>0.085</td>
<td>mg/L</td>
<td>0.0</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHOS_160330</td>
<td>12862</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.052</td>
<td>0.053</td>
<td>mg/L</td>
<td>1.9</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14080</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.113</td>
<td>0.122</td>
<td>mg/L</td>
<td>7.7</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14081</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.186</td>
<td>0.171</td>
<td>mg/L</td>
<td>8.4</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14088</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.010</td>
<td>0.011</td>
<td>mg/L</td>
<td>9.5</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14338</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.039</td>
<td>0.038</td>
<td>mg/L</td>
<td>2.6</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14624</td>
<td>TOTAL PHOSPHORUS</td>
<td>0.158</td>
<td>0.162</td>
<td>mg/L</td>
<td>2.5</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB_160315</td>
<td>12720</td>
<td>TURBIDITY</td>
<td>0.78</td>
<td>0.75</td>
<td>NTU</td>
<td>3.9</td>
<td>0-20</td>
<td>DUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch</td>
<td>Sample</td>
<td>Analyte</td>
<td>Result</td>
<td>Spike Result</td>
<td>Spike Result</td>
<td>Spike Conc</td>
<td>Units</td>
<td>Percent Recovery</td>
<td>QC Qualifier</td>
<td>Comment</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>IRON</td>
<td>0.11</td>
<td>0.136</td>
<td>0.025</td>
<td>mg/L</td>
<td>104</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANGANESE</td>
<td>0.006</td>
<td>0.032</td>
<td>0.025</td>
<td>mg/L</td>
<td>104</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>200.8_160316WW</td>
<td></td>
<td>COPPER</td>
<td>ND</td>
<td>0.028</td>
<td>0.025</td>
<td>ug/L</td>
<td>112</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARSENIC</td>
<td>8.9</td>
<td>34</td>
<td>25</td>
<td>ug/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>0.323</td>
<td>25.6</td>
<td>25</td>
<td>ug/L</td>
<td>101</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>1.17</td>
<td>27</td>
<td>25</td>
<td>ug/L</td>
<td>103</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>3.9</td>
<td>30</td>
<td>25</td>
<td>ug/L</td>
<td>104</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.6</td>
<td>24</td>
<td>25</td>
<td>ug/L</td>
<td>94</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SELENIUM</td>
<td>3.05</td>
<td>26</td>
<td>25</td>
<td>ug/L</td>
<td>92</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>11.7</td>
<td>12.5</td>
<td>ug/L</td>
<td>94</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZINC</td>
<td>25</td>
<td>48</td>
<td>25</td>
<td>ug/L</td>
<td>92</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>200.7_160316A</td>
<td></td>
<td>ARSENIC</td>
<td>0.00025</td>
<td>0.0244</td>
<td>0.025</td>
<td>mg/L</td>
<td>97</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BARIUM</td>
<td>0.028</td>
<td>0.056</td>
<td>0.025</td>
<td>mg/L</td>
<td>112</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CADMIUM</td>
<td>ND</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHROMIUM</td>
<td>0.0002</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>99</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COPPER</td>
<td>0.0003</td>
<td>0.028</td>
<td>0.025</td>
<td>mg/L</td>
<td>111</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>ND</td>
<td>0.025</td>
<td>0.025</td>
<td>mg/L</td>
<td>100</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SELENIUM</td>
<td>ND</td>
<td>0.0223</td>
<td>0.025</td>
<td>mg/L</td>
<td>89</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILVER</td>
<td>ND</td>
<td>0.0122</td>
<td>0.0125</td>
<td>mg/L</td>
<td>98</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZINC</td>
<td>0.0035</td>
<td>0.028</td>
<td>0.025</td>
<td>mg/L</td>
<td>98</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD</td>
<td>0.515</td>
<td>0.531</td>
<td>0.531</td>
<td>mg/L</td>
<td>3</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>245.1_160321</td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00174</td>
<td>0.00177</td>
<td>0.00167 mg/L</td>
<td>104</td>
<td>106</td>
<td>70-130</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MERCURY</td>
<td>ND</td>
<td>0.00176</td>
<td>0.00176</td>
<td>0.00167 mg/L</td>
<td>105</td>
<td>105</td>
<td>70-130</td>
<td>0.0</td>
</tr>
<tr>
<td>310.2_160318</td>
<td></td>
<td>BICARBONATE</td>
<td>62.5</td>
<td>314</td>
<td>315</td>
<td>250 mg CaCO3</td>
<td>101</td>
<td>101</td>
<td>70-130</td>
<td>0.4</td>
</tr>
<tr>
<td>8151W_160318</td>
<td></td>
<td>2,4 - D</td>
<td>ND</td>
<td>2</td>
<td>2</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>60-120</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,4 DB</td>
<td>ND</td>
<td>5.2</td>
<td>8</td>
<td>ug/L</td>
<td>65</td>
<td>NA</td>
<td>49-134</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,4,5 - TP (SILVEX)</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>68-122</td>
<td>0-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,4,5 T</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>62-128</td>
<td>0-20</td>
</tr>
</tbody>
</table>

%RPD = Relative Percent Difference
NA = Indicates %RPD could not be calculated
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.
Only Duplicate sample with detections are listed in this report
Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

FORM: QC Dependent.rpt
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of an analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch. Only Duplicate sample with detections are listed in this report. Limits are intended for water matrices only. These criteria are for guidance only when reported with soils/solids.

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

<table>
<thead>
<tr>
<th>Batch</th>
<th>Sample</th>
<th>Analyte</th>
<th>Result</th>
<th>Spike Result</th>
<th>Spike Conc</th>
<th>Units</th>
<th>Percent Recovery</th>
<th>QC Qualifier</th>
<th>Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>12865</td>
<td>ACIFLUORFEN</td>
<td>ND</td>
<td>0.79</td>
<td>1</td>
<td>ug/L</td>
<td>79</td>
<td>NA</td>
<td>65-125</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>12865</td>
<td>BENTAZON</td>
<td>ND</td>
<td>1.9</td>
<td>2</td>
<td>ug/L</td>
<td>95</td>
<td>NA</td>
<td>67-121</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>12865</td>
<td>DALAPON</td>
<td>ND</td>
<td>12.9</td>
<td>13</td>
<td>ug/L</td>
<td>99</td>
<td>NA</td>
<td>53-421</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>12865</td>
<td>DICAMBA</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>66-126</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>12865</td>
<td>DICHLORPROP</td>
<td>ND</td>
<td>3</td>
<td>3</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>63-123</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>12865</td>
<td>DINOSEB</td>
<td>ND</td>
<td>1.8</td>
<td>2</td>
<td>ug/L</td>
<td>90</td>
<td>NA</td>
<td>73-127</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>12865</td>
<td>PENTACHLOROPHENOL</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>69-123</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>12865</td>
<td>PICLORAM</td>
<td>ND</td>
<td>0.91</td>
<td>1</td>
<td>ug/L</td>
<td>91</td>
<td>NA</td>
<td>48-114</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>12865</td>
<td>TOTAL DC PA</td>
<td>ND</td>
<td>0.82</td>
<td>1</td>
<td>ug/L</td>
<td>82</td>
<td>NA</td>
<td>48-168</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>12865</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>I160315A</td>
<td></td>
</tr>
<tr>
<td>12865</td>
<td>TRICLOPYR</td>
<td>ND</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>100</td>
<td>NA</td>
<td>70-130</td>
<td>NA</td>
<td>0-20</td>
</tr>
<tr>
<td>NO3NO2_160315</td>
<td></td>
</tr>
<tr>
<td>12861</td>
<td>NITRATE-N</td>
<td>ND</td>
<td>0.90</td>
<td>1.44</td>
<td>0.5</td>
<td>mg/L</td>
<td>108</td>
<td>108</td>
<td>80-120</td>
<td>0.0</td>
</tr>
<tr>
<td>OPHOS_160315</td>
<td></td>
</tr>
<tr>
<td>12861</td>
<td>ORTHO-PHOSPHATE</td>
<td>ND</td>
<td>0.08</td>
<td>1.03</td>
<td>1.04</td>
<td>mg/L</td>
<td>95</td>
<td>96</td>
<td>70-130</td>
<td>1.0</td>
</tr>
<tr>
<td>TPHOS_160317</td>
<td></td>
</tr>
<tr>
<td>12861</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>0.085</td>
<td>0.130</td>
<td>0.134</td>
<td>0.050</td>
<td>mg/L</td>
<td>90</td>
<td>98</td>
<td>70-130</td>
</tr>
<tr>
<td>TPHOS_160330</td>
<td></td>
</tr>
<tr>
<td>12862</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>0.052</td>
<td>0.108</td>
<td>0.106</td>
<td>0.050</td>
<td>mg/L</td>
<td>112</td>
<td>108</td>
<td>70-130</td>
</tr>
<tr>
<td>14080</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>0.113</td>
<td>0.168</td>
<td>0.164</td>
<td>0.050</td>
<td>mg/L</td>
<td>106</td>
<td>102</td>
<td>70-130</td>
</tr>
<tr>
<td>14081</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>0.186</td>
<td>0.209</td>
<td>0.195</td>
<td>0.050</td>
<td>mg/L</td>
<td>46</td>
<td>18</td>
<td>70-130</td>
</tr>
<tr>
<td>14088</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>0.010</td>
<td>0.061</td>
<td>0.068</td>
<td>0.050</td>
<td>mg/L</td>
<td>102</td>
<td>116</td>
<td>70-130</td>
</tr>
<tr>
<td>14338</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>0.039</td>
<td>0.098</td>
<td>0.094</td>
<td>0.050</td>
<td>mg/L</td>
<td>118</td>
<td>110</td>
<td>70-130</td>
</tr>
<tr>
<td>14624</td>
<td>TOTAL PHOSPHORUS</td>
<td>ND</td>
<td>0.158</td>
<td>0.195</td>
<td>0.203</td>
<td>0.050</td>
<td>mg/L</td>
<td>74</td>
<td>90</td>
<td>70-130</td>
</tr>
</tbody>
</table>
Qualifier Definitions

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H5</td>
<td>This test is specified to be performed in the field within 15 minutes of sampling; sample was received and analyzed past the regulatory holding time.</td>
</tr>
<tr>
<td>IEV</td>
<td>Acceptance criteria do not apply to estimated values</td>
</tr>
<tr>
<td>INH</td>
<td>The sample was non-homogeneous</td>
</tr>
<tr>
<td>IS</td>
<td>The ratio of the spike concentration to sample background was too low to meet performance criteria</td>
</tr>
<tr>
<td>J</td>
<td>Indicates an estimated concentration. This occurs when an analyte concentration is below the calibration curve but is above the method detection limit.</td>
</tr>
<tr>
<td>LR</td>
<td>Low recovery can not be accounted for. However, there is adequate sensitivity to detect the compound at the lower PQL. No sample detections so no further action for this analysis batch.</td>
</tr>
<tr>
<td>N1</td>
<td>See case narrative.</td>
</tr>
</tbody>
</table>

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.
<table>
<thead>
<tr>
<th>Number of Containers</th>
<th>T. Plate (Particularly</th>
<th>Quality Tray/Num</th>
<th>Quantity</th>
<th>Other</th>
<th>T. Plate</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Comment on Request</th>
<th>Special Instructions</th>
<th>Sample Received Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sample Request Form (Must Include Fax or Email):

- **Date:** 3/14/01
- **Time:** 11:45 AM
- **Received by:**
- **Sample Received Date:** 3/14/01
- **Time:** 11:45 AM
- **Sampled by:**

Conditions on Request:

- Chain of Custody & Labels Agree
- Samples Received Intact
- Sample Temp. at 1°C Satisfaction
- Custody Seals Intact

Sample ID:

- Water
- Surface Water
- Ground Water
- DW - Drinking Water
- SW - Surface Water
- WW - Waste Water
- SW - Waste Water
- Soil
- Other

Sample Data:

- **Sample ID:** 31-461-1720
- **Quality Control:**
- **Other:**

Instructions:

1. Use one label per sample location.
2. Be specific in sample requests.
3. Include all sample locations.
4. Check of sample is to be performed for:
 - Field ID
 - Field ID

Special Instructions:

- Email: steven.r.palladino@me.com
- Phone: 541-381-2700
- Fax: 541-381-2701
- Address: 810 S Main Street
- City: Walla Walla
- State: WA
- Zip: 99362

ANALYTICAL

- FORRA/CERCA
- Clean Water Act
- Safe Drinking Water Act
- Check Regulatory Program
- See Lab Note Only

For Lab Use Only:

- Please complete all applicable shaded sections.
April 20, 2016

Vista Work Order No. 1600291

Mr. Steven Patten
Walla Walla Basin Watershed Council
810 S. Main Street
Milton-Freewater, OR 97862

Dear Mr. Patten,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on March 15, 2016. This sample set was analyzed on a standard turn-around time, under your Project Name 'Last Chance Road'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director
Sample Condition on Receipt:

Five aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1668C

These samples were extracted and analyzed for 209 PCB congeners by EPA Method 1668C using a ZB-1 GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Narrative</td>
<td>1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Sample Inventory</td>
<td>4</td>
</tr>
<tr>
<td>Analytical Results</td>
<td>5</td>
</tr>
<tr>
<td>Qualifiers</td>
<td>32</td>
</tr>
<tr>
<td>Certifications</td>
<td>33</td>
</tr>
<tr>
<td>Sample Receipt</td>
<td>36</td>
</tr>
</tbody>
</table>
Sample Inventory Report

<table>
<thead>
<tr>
<th>Vista Sample ID</th>
<th>Client Sample ID</th>
<th>Sampled</th>
<th>Received</th>
<th>Components/Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600291-01</td>
<td>INTAKE</td>
<td>14-Mar-16 11:15</td>
<td>15-Mar-16 10:05</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600291-02</td>
<td>GW-148</td>
<td>14-Mar-16 11:55</td>
<td>15-Mar-16 10:05</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600291-03</td>
<td>GW-149</td>
<td>14-Mar-16 13:10</td>
<td>15-Mar-16 10:05</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600291-04</td>
<td>GW-158</td>
<td>14-Mar-16 10:50</td>
<td>15-Mar-16 10:05</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td>1600291-05</td>
<td>GW-159</td>
<td>14-Mar-16 12:25</td>
<td>15-Mar-16 10:05</td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amber Glass NM Bottle, 1L</td>
</tr>
</tbody>
</table>
ANALYTICAL RESULTS
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>0.441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>0.452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>0.451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>5.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>4.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>4.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>4.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>ND</td>
<td>4.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>4.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>3.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>0.499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>0.590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.592</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>0.345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>ND</td>
<td>0.323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>ND</td>
<td>0.319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>0.572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>ND</td>
<td>0.367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>0.397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>ND</td>
<td>0.442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-44</td>
<td>ND</td>
<td>0.564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>ND</td>
<td>0.484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>0.531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>ND</td>
<td>0.410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>0.509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>ND</td>
<td>0.434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>ND</td>
<td>0.390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-53</td>
<td>ND</td>
<td>0.443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>ND</td>
<td>0.331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>0.322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>ND</td>
<td>0.325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>0.361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>0.314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>0.373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>ND</td>
<td>0.310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>0.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>ND</td>
<td>0.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>0.357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>ND</td>
<td>0.302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>ND</td>
<td>0.325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>ND</td>
<td>0.316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>ND</td>
<td>0.828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>0.506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>ND</td>
<td>0.683</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td>0.604</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>0.813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>0.528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>0.744</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit
EMPC - Estimated maximum possible concentration
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Sample ID: Method Blank</th>
<th>EPA Method 1668C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix: Aqueous</td>
<td>QC Batch: B6C0129</td>
</tr>
<tr>
<td>Sample Size: 1.00 L</td>
<td>Date Extracted: 21-Mar-2016 8:04</td>
</tr>
<tr>
<td>Lab Sample: B6C0129-BLK1</td>
<td>Date Analyzed: 28-Mar-16 19:47 Column: ZB-1 Analyst: ANP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>0.606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>0.649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>0.647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>0.585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>0.504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>0.494</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>0.610</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.513</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>0.445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>0.489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>0.497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>ND</td>
<td>0.452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>ND</td>
<td>4.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>ND</td>
<td>0.592</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>ND</td>
<td>0.572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>ND</td>
<td>0.787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>ND</td>
<td>0.626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.564</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-1</td>
<td>90.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>90.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>93.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>95.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>91.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>90.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>103</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>85.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>120</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>96.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>96.6</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>80.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>101</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>99.5</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>112</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>93.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>115</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>111</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>109</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>114</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>114</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>116</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>110</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>99.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>83.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Description:
- **Sample ID:** E PA Method 1668C
- **Matrix:** Aqueous
- **Sample Size:** 1.00 L
- **QC Batch:** B6C0129
- **Date Extracted:** 21-Mar-2016 8:04
- **Lab Sample:** B6C0129-BLK1
- **Date Analyzed:** 28-Mar-16 19:47
- **Column:** ZB-1
- **Analyst:** ANP

Labeled Standard
- **13C-PCB-1**
- **13C-PCB-3**
- **13C-PCB-4**
- **13C-PCB-11**
- **13C-PCB-9**
- **13C-PCB-19**
- **13C-PCB-28**
- **13C-PCB-32**
- **13C-PCB-37**
- **13C-PCB-47**
- **13C-PCB-52**
- **13C-PCB-54**
- **13C-PCB-70**
- **13C-PCB-77**
- **13C-PCB-80**
- **13C-PCB-81**
- **13C-PCB-95**
- **13C-PCB-97**
- **13C-PCB-101**
- **13C-PCB-104**
- **13C-PCB-105**
- **13C-PCB-114**
- **13C-PCB-118**
- **13C-PCB-123**
- **13C-PCB-126**
- **13C-PCB-127**
- **13C-PCB-138**
- **13C-PCB-141**
- **13C-PCB-153**
- **13C-PCB-155**
- **13C-PCB-156**

Qualifiers
- Labeled Standards
- DL - Sample specific estimated detection limit
- EMPC - Estimated maximum possible concentration
- LCL-UCL - Lower control limit - upper control limit
- See individual congeners for qualifiers.
Sample ID: OPR

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/L)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Limits</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>785</td>
<td>1000</td>
<td>78.5</td>
<td>60 - 135</td>
<td>IS</td>
<td>86.1</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-3</td>
<td>810</td>
<td>1000</td>
<td>81.0</td>
<td>60 - 135</td>
<td>IS</td>
<td>86.6</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>1560</td>
<td>2000</td>
<td>77.9</td>
<td>60 - 135</td>
<td>IS</td>
<td>86.1</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-15</td>
<td>849</td>
<td>1000</td>
<td>84.9</td>
<td>60 - 135</td>
<td>IS</td>
<td>89.4</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-19</td>
<td>976</td>
<td>1000</td>
<td>97.6</td>
<td>60 - 135</td>
<td>IS</td>
<td>84.7</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-37</td>
<td>882</td>
<td>1000</td>
<td>88.2</td>
<td>60 - 135</td>
<td>IS</td>
<td>88.9</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-54</td>
<td>958</td>
<td>1000</td>
<td>95.8</td>
<td>60 - 135</td>
<td>IS</td>
<td>82.8</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-77</td>
<td>917</td>
<td>1000</td>
<td>91.7</td>
<td>60 - 135</td>
<td>IS</td>
<td>90.3</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-81</td>
<td>884</td>
<td>1000</td>
<td>88.4</td>
<td>60 - 135</td>
<td>IS</td>
<td>111</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-104</td>
<td>930</td>
<td>1000</td>
<td>93.0</td>
<td>60 - 135</td>
<td>IS</td>
<td>93.9</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-105</td>
<td>761</td>
<td>1000</td>
<td>76.1</td>
<td>60 - 135</td>
<td>IS</td>
<td>95.6</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>1820</td>
<td>2000</td>
<td>90.9</td>
<td>60 - 135</td>
<td>IS</td>
<td>75.0</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-114</td>
<td>799</td>
<td>1000</td>
<td>79.9</td>
<td>60 - 135</td>
<td>IS</td>
<td>97.2</td>
<td>15 - 145</td>
</tr>
<tr>
<td>PCB-123</td>
<td>907</td>
<td>1000</td>
<td>90.7</td>
<td>60 - 135</td>
<td>IS</td>
<td>97.7</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-126</td>
<td>823</td>
<td>1000</td>
<td>82.3</td>
<td>60 - 135</td>
<td>IS</td>
<td>94.0</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-155</td>
<td>946</td>
<td>1000</td>
<td>94.6</td>
<td>60 - 135</td>
<td>IS</td>
<td>96.5</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-156</td>
<td>893</td>
<td>1000</td>
<td>89.3</td>
<td>60 - 135</td>
<td>IS</td>
<td>100</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-157</td>
<td>918</td>
<td>1000</td>
<td>91.8</td>
<td>60 - 135</td>
<td>IS</td>
<td>106</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-167</td>
<td>917</td>
<td>1000</td>
<td>91.7</td>
<td>60 - 135</td>
<td>IS</td>
<td>101</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-169</td>
<td>949</td>
<td>1000</td>
<td>94.9</td>
<td>60 - 135</td>
<td>IS</td>
<td>90.8</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-188</td>
<td>940</td>
<td>1000</td>
<td>94.0</td>
<td>60 - 135</td>
<td>IS</td>
<td>106</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-189</td>
<td>948</td>
<td>1000</td>
<td>94.8</td>
<td>60 - 135</td>
<td>IS</td>
<td>102</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-202</td>
<td>951</td>
<td>1000</td>
<td>95.1</td>
<td>60 - 135</td>
<td>IS</td>
<td>103</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-205</td>
<td>860</td>
<td>1000</td>
<td>86.0</td>
<td>60 - 135</td>
<td>IS</td>
<td>105</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-206</td>
<td>981</td>
<td>1000</td>
<td>98.1</td>
<td>60 - 135</td>
<td>IS</td>
<td>106</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-208</td>
<td>1010</td>
<td>1000</td>
<td>101</td>
<td>60 - 135</td>
<td>IS</td>
<td>106</td>
<td>40 - 145</td>
</tr>
<tr>
<td>PCB-209</td>
<td>898</td>
<td>1000</td>
<td>89.8</td>
<td>60 - 135</td>
<td>IS</td>
<td>100</td>
<td>40 - 145</td>
</tr>
</tbody>
</table>

Matrix: Aqueous
Sample Size: 1.00 L
QC Batch: B6C0129
Date Extracted: 21-Mar-2016 8:04
Lab Sample: B6C0129-BS1
Date Analyzed: 28-Mar-16 17:36
Column: ZB-1
Analyst: ANP
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Amt Found (pg/L)</th>
<th>Spike Amt</th>
<th>%R</th>
<th>Limits</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>13C-PCB-202</td>
<td></td>
<td>82.1</td>
<td>40 - 145</td>
<td>IS</td>
<td>13C-PCB-202</td>
<td>82.1</td>
</tr>
<tr>
<td>IS</td>
<td>13C-PCB-206</td>
<td></td>
<td>109</td>
<td>40 - 145</td>
<td>IS</td>
<td>13C-PCB-206</td>
<td>109</td>
</tr>
<tr>
<td>IS</td>
<td>13C-PCB-208</td>
<td></td>
<td>89.3</td>
<td>40 - 145</td>
<td>IS</td>
<td>13C-PCB-208</td>
<td>89.3</td>
</tr>
<tr>
<td>IS</td>
<td>13C-PCB-209</td>
<td></td>
<td>107</td>
<td>40 - 145</td>
<td>IS</td>
<td>13C-PCB-209</td>
<td>107</td>
</tr>
<tr>
<td>CRS</td>
<td>13C-PCB-79</td>
<td></td>
<td>100</td>
<td>40 - 145</td>
<td>CRS</td>
<td>13C-PCB-79</td>
<td>100</td>
</tr>
<tr>
<td>CRS</td>
<td>13C-PCB-178</td>
<td></td>
<td>92.7</td>
<td>40 - 145</td>
<td>CRS</td>
<td>13C-PCB-178</td>
<td>92.7</td>
</tr>
</tbody>
</table>

LCL-UCL - Lower control limit - upper control limit
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>ND</td>
<td>1.45</td>
<td>ND</td>
<td></td>
<td>PCB-44</td>
<td>ND</td>
<td>0.689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>1.13</td>
<td></td>
<td></td>
<td>PCB-45</td>
<td>ND</td>
<td>0.596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>ND</td>
<td>1.12</td>
<td></td>
<td></td>
<td>PCB-46</td>
<td>ND</td>
<td>0.654</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>ND</td>
<td>8.98</td>
<td></td>
<td></td>
<td>PCB-47</td>
<td>ND</td>
<td>0.501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>ND</td>
<td>6.48</td>
<td></td>
<td></td>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>6.65</td>
<td></td>
<td></td>
<td>PCB-50</td>
<td>ND</td>
<td>0.665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>6.57</td>
<td></td>
<td></td>
<td>PCB-51</td>
<td>ND</td>
<td>0.534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>ND</td>
<td>4.96</td>
<td></td>
<td></td>
<td>PCB-52/69</td>
<td>2.28</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>5.02</td>
<td></td>
<td></td>
<td>PCB-53</td>
<td>ND</td>
<td>0.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>4.33</td>
<td></td>
<td></td>
<td>PCB-54</td>
<td>ND</td>
<td>0.505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>4.42</td>
<td></td>
<td></td>
<td>PCB-55</td>
<td>ND</td>
<td>0.339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>ND</td>
<td>0.646</td>
<td></td>
<td></td>
<td>PCB-56/60</td>
<td>ND</td>
<td>0.378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>ND</td>
<td>0.708</td>
<td></td>
<td></td>
<td>PCB-57</td>
<td>ND</td>
<td>0.392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>ND</td>
<td>0.765</td>
<td></td>
<td></td>
<td>PCB-58</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>0.958</td>
<td></td>
<td></td>
<td>PCB-61/70</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>ND</td>
<td>0.457</td>
<td></td>
<td></td>
<td>PCB-62</td>
<td>ND</td>
<td>0.442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.454</td>
<td></td>
<td></td>
<td>PCB-63</td>
<td>ND</td>
<td>0.378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.437</td>
<td></td>
<td></td>
<td>PCB-65</td>
<td>ND</td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>ND</td>
<td>0.522</td>
<td></td>
<td></td>
<td>PCB-66/76</td>
<td>ND</td>
<td>0.372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-25</td>
<td>ND</td>
<td>0.481</td>
<td></td>
<td></td>
<td>PCB-67</td>
<td>ND</td>
<td>0.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>ND</td>
<td>0.427</td>
<td></td>
<td></td>
<td>PCB-68</td>
<td>ND</td>
<td>0.373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>ND</td>
<td>0.427</td>
<td></td>
<td></td>
<td>PCB-73</td>
<td>ND</td>
<td>0.440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.437</td>
<td></td>
<td></td>
<td>PCB-74</td>
<td>ND</td>
<td>0.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.606</td>
<td></td>
<td></td>
<td>PCB-77</td>
<td>ND</td>
<td>0.367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>ND</td>
<td>0.422</td>
<td></td>
<td></td>
<td>PCB-78</td>
<td>ND</td>
<td>0.399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.406</td>
<td></td>
<td></td>
<td>PCB-79</td>
<td>ND</td>
<td>0.360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
<td>PCB-80</td>
<td>ND</td>
<td>0.315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.403</td>
<td></td>
<td></td>
<td>PCB-81</td>
<td>ND</td>
<td>0.364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td>0.389</td>
<td></td>
<td></td>
<td>PCB-82</td>
<td>ND</td>
<td>0.830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.422</td>
<td></td>
<td></td>
<td>PCB-83</td>
<td>ND</td>
<td>0.486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.416</td>
<td></td>
<td></td>
<td>PCB-84/92</td>
<td>ND</td>
<td>0.691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>0.700</td>
<td></td>
<td></td>
<td>PCB-85/116</td>
<td>ND</td>
<td>0.580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>ND</td>
<td>0.448</td>
<td></td>
<td></td>
<td>PCB-86</td>
<td>ND</td>
<td>0.782</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>ND</td>
<td>0.485</td>
<td></td>
<td></td>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>0.508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>ND</td>
<td>1.19</td>
<td></td>
<td></td>
<td>PCB-88/91</td>
<td>ND</td>
<td>0.729</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.743</td>
<td>0.771</td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>0.613</td>
<td>0.725</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.635</td>
<td>0.635</td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.622</td>
<td>0.622</td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>0.592</td>
<td>0.592</td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.520</td>
<td>0.520</td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>0.348</td>
<td>0.348</td>
<td></td>
</tr>
<tr>
<td>PCB-98</td>
<td>ND</td>
<td>0.477</td>
<td>0.477</td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.461</td>
<td>0.461</td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.575</td>
<td>0.575</td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>1.14</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.353</td>
<td>0.353</td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>0.430</td>
<td>0.430</td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-112</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-115</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-116</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-117</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-118</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-125</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>0.369</td>
<td>0.369</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Sample ID: INTAKE

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Last Chance Road
- **Date Collected:** 14-Mar-2016 11:15

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.03 L

Laboratory Data
- **Lab Sample:** 1600291-01
- **QC Batch:** B6C0129
- **Date Analyzed:** 28-Mar-16 20:52
- **Column:** ZB-1
- **Analyst:** ANP

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.586</td>
<td>0.629</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.603</td>
<td>0.629</td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.603</td>
<td>0.629</td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.560</td>
<td>0.605</td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.512</td>
<td>0.560</td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.529</td>
<td>0.560</td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.470</td>
<td>0.529</td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.450</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.430</td>
<td>0.480</td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.475</td>
<td>0.525</td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.456</td>
<td>0.506</td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.489</td>
<td>0.539</td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.459</td>
<td>0.509</td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>1.08 J</td>
<td>0.586</td>
<td>0.629</td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.310</td>
<td>0.360</td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>0.729</td>
<td>0.789</td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.518</td>
<td>0.578</td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>0.801</td>
<td>0.861</td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>0.815</td>
<td>0.875</td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.584</td>
<td>0.644</td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.551</td>
<td>0.531</td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.593</td>
<td>0.633</td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>0.562</td>
<td>0.622</td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.219</td>
<td>0.279</td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.361</td>
<td>0.421</td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.235</td>
<td>0.295</td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.239</td>
<td>0.299</td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>1.31</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>1.45</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>PCB-210</td>
<td>ND</td>
<td>1.65</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>PCB-211</td>
<td>ND</td>
<td>4.57</td>
<td>5.07</td>
<td></td>
</tr>
<tr>
<td>PCB-212</td>
<td>ND</td>
<td>4.76</td>
<td>5.26</td>
<td></td>
</tr>
<tr>
<td>PCB-213</td>
<td>ND</td>
<td>1.14</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>PCB-214</td>
<td>ND</td>
<td>1.57</td>
<td>2.07</td>
<td></td>
</tr>
<tr>
<td>PCB-215</td>
<td>ND</td>
<td>0.659</td>
<td>0.709</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.

Work Order: 1600291

Page: 14 of 37
Sample ID: INTAKE
Client Data
Name: Walla Walla Basin Watershed Council
Project: Last Chance Road
Date Collected: 14-Mar-2016 11:15

Sample Data
Matrix: Aqueous
Sample Size: 1.03 L

Laboratory Data
Lab Sample: 1600291-01
QC Batch: B6C0129
Date Analyzed: 28-Mar-2016 20:52
Column: ZB-1
Analyst: ANP

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>31.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>42.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>47.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>73.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>54.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>58.5</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>88.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>68.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>104</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>85.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>84.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>91.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>97.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>93.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>93.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>91.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>95.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>83.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>98.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>99.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>99.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>100</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>99.2</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>97.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>96.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>93.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>77.0</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>96.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>93.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>95.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>95.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>93.5</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Labeled Standard
13C-PCB-170 85.4 10 - 145
13C-PCB-180 84.4 10 - 145
13C-PCB-188 77.8 10 - 145
13C-PCB-189 84.6 10 - 145
13C-PCB-194 101 10 - 145
13C-PCB-202 72.1 10 - 145
13C-PCB-206 109 10 - 145
13C-PCB-208 91.4 10 - 145
13C-PCB-209 104 10 - 145
13C-PCB-79 98.1 10 - 145
13C-PCB-178 87.1 10 - 145

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Sample Data
- **Sample ID:** GW-148
- **Method:** EPA Method 1668C
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Last Chance Road
- **Date Collected:** 14-Mar-2016 11:55

Laboratory Data
- **Lab Sample:** 1600291-02
- **Date Received:** 15-Mar-2016 10:05
- **QC Batch:** B6C0129
- **Date Extracted:** 21-Mar-2016 8:04
- **Date Analyzed:** 28-Mar-16 21:57
- **Column:** ZB-1
- **Analyst:** ANP

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>0.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>4.55</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>26.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>54.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>3.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>3.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>ND</td>
<td>3.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>3.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>9.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>27.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>ND</td>
<td>3.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>11.9</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-22</td>
<td>5.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.03</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>1.41</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>2.87</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-32</td>
<td>ND</td>
<td>0.319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>1.30</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-37</td>
<td>0.343</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>0.338</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>2.44</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>0.967</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>ND</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit

Work Order 1600291
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1.55</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>0.527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>0.512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>0.469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>0.378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>0.540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>0.658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>0.459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>0.356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138/163/164</td>
<td>ND</td>
<td>1.04</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-139/149</td>
<td>ND</td>
<td>0.602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>0.674</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>ND</td>
<td>0.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>ND</td>
<td>0.612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>ND</td>
<td>0.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146/165</td>
<td>ND</td>
<td>0.345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147</td>
<td>ND</td>
<td>0.673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>ND</td>
<td>0.641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>ND</td>
<td>0.465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-151</td>
<td>ND</td>
<td>0.641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>ND</td>
<td>0.448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153</td>
<td>ND</td>
<td>1.17</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>ND</td>
<td>0.589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>ND</td>
<td>0.437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156</td>
<td>ND</td>
<td>0.295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-157</td>
<td>ND</td>
<td>0.299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>ND</td>
<td>0.287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-160</td>
<td>ND</td>
<td>0.307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-161</td>
<td>ND</td>
<td>0.283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-162</td>
<td>ND</td>
<td>0.275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-163</td>
<td>ND</td>
<td>0.414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-164</td>
<td>ND</td>
<td>0.484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-165</td>
<td>ND</td>
<td>0.471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-166</td>
<td>ND</td>
<td>0.507</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>ND</td>
<td>0.621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-168</td>
<td>ND</td>
<td>0.532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>ND</td>
<td>0.554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>ND</td>
<td>0.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171</td>
<td>ND</td>
<td>0.542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>ND</td>
<td>0.540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-173</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit
EMPC - Estimated maximum possible concentration
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Sample ID: GW-148

Client Data
- Name: Walla Walla Basin Watershed Council
- Project: Last Chance Road
- Date Collected: 14-Mar-2016 11:55

Sample Data
- Matrix: Aqueous
- Sample Size: 1.02 L

Laboratory Data
- Lab Sample: 1600291-02
- Date Received: 15-Mar-2016 10:05
- QC Batch: B6C0129
- Date Extracted: 21-Mar-2016 8:04
- Date Analyzed: 28-Mar-16 21:57
- Column: ZB-1
- Analyst: ANP

Analyte Concentration (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>1.19</td>
<td>0.463</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>0.569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>0.626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>0.637</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.439</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td></td>
<td>19.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td></td>
<td>81.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td></td>
<td>107</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td></td>
<td>20.9</td>
<td>23.9</td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td></td>
<td>1.55</td>
<td>2.52</td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td></td>
<td>2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td></td>
<td>0.621</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

Qualifiers
- J: Sample specific estimated detection limit

Work Order 1600291
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td></td>
<td></td>
<td></td>
<td>13C-PCB-170</td>
<td>86.5</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>88.2</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-180</td>
<td>87.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>96.2</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-188</td>
<td>76.0</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>91.7</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-189</td>
<td>79.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>92.1</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-194</td>
<td>103</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>80.1</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-202</td>
<td>71.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>85.1</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-206</td>
<td>106</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>79.0</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-208</td>
<td>93.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>106</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-209</td>
<td>97.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>95.1</td>
<td>5-145</td>
<td></td>
<td>CRS</td>
<td>99.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-79</td>
<td>97.5</td>
<td>10-145</td>
<td></td>
<td>13C-PCB-178</td>
<td>92.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>99.6</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>109</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>103</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>89.6</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>106</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>107</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>108</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>110</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>104</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>100</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>104</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>102</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>100</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>79.2</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>99.0</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>97.4</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>99.7</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>102</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>83.2</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Sample ID: GW-149

Client Data
Name: Walla Walla Basin Watershed Council
Project: Last Chance Road
Date Collected: 14-Mar-2016 13:10

Sample Data
Matrix: Aqueous
Sample Size: 1.03 L

Laboratory Data
Lab Sample: 1600291-03
Date Received: 15-Mar-2016 10:05
QC Batch: B6C0129
Date Extracted: 21-Mar-2016 8:04
Date Analyzed: 28-Mar-16 23:02
Column: ZB-1
Analyzer: ANP

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>17.4</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>0.480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>6.24</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>33.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>64.6</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>2.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>2.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>ND</td>
<td>2.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>2.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>ND</td>
<td>2.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>21.4</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-17</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>31.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>4.42</td>
<td></td>
<td>5.83</td>
<td>J</td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>ND</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.16</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-26</td>
<td>2.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>12.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>ND</td>
<td></td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>ND</td>
<td>0.437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>ND</td>
<td>2.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>0.761</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>2.47</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-44</td>
<td>2.79</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-45</td>
<td>0.987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>0.419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>2.94</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>ND</td>
<td>0.283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>0.381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>ND</td>
<td>0.342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>3.15</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-53</td>
<td>ND</td>
<td>0.350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>0.289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>1.00</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>0.260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>0.256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>1.35</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>0.276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>0.250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>0.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>1.18</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>0.267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>0.550</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>0.282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>ND</td>
<td>0.429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>ND</td>
<td>0.224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>ND</td>
<td>0.239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>ND</td>
<td>0.580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>0.371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>ND</td>
<td>0.525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td>0.442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>0.596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>0.556</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.564</td>
<td>0.564</td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td>0.326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>0.466</td>
<td>0.564</td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td>0.273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.588</td>
<td>0.564</td>
<td></td>
<td>PCB-138/163/164</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.553</td>
<td>0.564</td>
<td></td>
<td>PCB-139/149</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>0.485</td>
<td>0.564</td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>0.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.456</td>
<td>0.564</td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td>0.278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>0.474</td>
<td>0.564</td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>0.435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>0.450</td>
<td>0.564</td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>0.341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.517</td>
<td>0.564</td>
<td></td>
<td>PCB-146/165</td>
<td>ND</td>
<td>0.261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.514</td>
<td>0.564</td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td>0.478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.394</td>
<td>0.564</td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>0.455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.201</td>
<td>0.564</td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>0.330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>0.345</td>
<td>0.564</td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td>0.455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.323</td>
<td>0.564</td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>0.319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.438</td>
<td>0.564</td>
<td></td>
<td>PCB-153</td>
<td>ND</td>
<td>0.864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>0.517</td>
<td>0.564</td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>0.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.332</td>
<td>0.564</td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>0.311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.420</td>
<td>0.564</td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.203</td>
<td>0.564</td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td>0.229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.328</td>
<td>0.564</td>
<td></td>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.310</td>
<td>0.564</td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.355</td>
<td>0.564</td>
<td></td>
<td>PCB-160</td>
<td>ND</td>
<td>0.213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.241</td>
<td>0.564</td>
<td></td>
<td>PCB-161</td>
<td>ND</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.344</td>
<td>0.564</td>
<td></td>
<td>PCB-162</td>
<td>ND</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.331</td>
<td>0.564</td>
<td></td>
<td>PCB-163</td>
<td>ND</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.248</td>
<td>0.564</td>
<td></td>
<td>PCB-164</td>
<td>ND</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.333</td>
<td>0.564</td>
<td></td>
<td>PCB-165</td>
<td>ND</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.255</td>
<td>0.564</td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>0.231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.317</td>
<td>0.564</td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td>0.225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.349</td>
<td>0.564</td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>0.208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.334</td>
<td>0.564</td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>0.281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.252</td>
<td>0.564</td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td>0.420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.310</td>
<td>0.564</td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td>0.405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.303</td>
<td>0.564</td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td>0.436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>0.467</td>
<td>0.564</td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>0.534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-136</td>
<td>ND</td>
<td>0.241</td>
<td>0.564</td>
<td></td>
<td>PCB-174</td>
<td>ND</td>
<td>0.458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>ND</td>
<td>0.344</td>
<td>0.564</td>
<td></td>
<td>PCB-175</td>
<td>ND</td>
<td>0.434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-138</td>
<td>ND</td>
<td>0.252</td>
<td>0.564</td>
<td></td>
<td>PCB-176</td>
<td>ND</td>
<td>0.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-139</td>
<td>ND</td>
<td>0.303</td>
<td>0.564</td>
<td></td>
<td>PCB-177</td>
<td>ND</td>
<td>0.466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-140</td>
<td>ND</td>
<td>0.467</td>
<td>0.564</td>
<td></td>
<td>PCB-178</td>
<td>ND</td>
<td>0.423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>ND</td>
<td>0.534</td>
<td>0.564</td>
<td></td>
<td>PCB-179</td>
<td>ND</td>
<td>0.326</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DL - Sample specific estimated detection limit
EMPC - Estimated maximum possible concentration
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
Sample ID: GW-149

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Last Chance Road
- **Date Collected:** 14-Mar-2016 13:10

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.03 L

Laboratory Data
- **Lab Sample:** 1600291-03
- **QC Batch:** B6C0129
- **Date Analyzed:** 28-Mar-16 23:02
- **Column:** ZB-1
- **Analyst:** ANP
- **Date Extracted:** 21-Mar-2016

Analyte Conc. (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>0.679</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>0.591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>0.650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>0.661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.240</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

- **monoCB:** 23.6
- **diCB:** 97.8
- **triCB:** 110
- **tetraCB:** 17.2
- **pentaCB:** ND
- **hexaCB:** 2.21
- **heptaCB:** ND
- **octaCB:** 0.679
- **nonaCB:** ND
- **DecaCB:** ND
- **Total PCB:** 251

Note:
- DL - Sample specific estimated detection limit
- EMPC - Estimated maximum possible concentration
- LCL-UCL - Lower control limit - upper control limit
- See individual congeners for qualifiers.
Sample ID: GW-149

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Last Chance Road
- **Date Collected:** 14-Mar-2016 13:10

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.03 L

Laboratory Data
- **Lab Sample:** 1600291-03
- **Date Received:** 15-Mar-2016 10:05
- **QC Batch:** B6C0129
- **Date Extracted:** 21-Mar-2016 8:04
- **Date Analyzed:** 28-Mar-16 23:02
- **Column:** ZB-1
- **Analyst:** ANP

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>82.0</td>
<td>5 - 145</td>
<td>13C-PCB-170</td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>80.5</td>
<td>5 - 145</td>
<td>13C-PCB-180</td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>85.3</td>
<td>5 - 145</td>
<td>13C-PCB-188</td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>87.1</td>
<td>5 - 145</td>
<td>13C-PCB-189</td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>82.5</td>
<td>5 - 145</td>
<td>13C-PCB-194</td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>71.5</td>
<td>5 - 145</td>
<td>13C-PCB-202</td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>86.0</td>
<td>5 - 145</td>
<td>13C-PCB-206</td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>72.9</td>
<td>5 - 145</td>
<td>13C-PCB-208</td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>102</td>
<td>5 - 145</td>
<td>13C-PCB-209</td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>87.6</td>
<td>5 - 145</td>
<td>CRS 13C-PCB-79</td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>90.4</td>
<td>5 - 145</td>
<td>13C-PCB-178</td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>75.8</td>
<td>5 - 145</td>
<td>88.2</td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>90.9</td>
<td>5 - 145</td>
<td>13C-PCB-141</td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>104</td>
<td>10 - 145</td>
<td>13C-PCB-153</td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>95.2</td>
<td>10 - 145</td>
<td>13C-PCB-155</td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>97.5</td>
<td>10 - 145</td>
<td>13C-PCB-156</td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>93.2</td>
<td>10 - 145</td>
<td>13C-PCB-157</td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>103</td>
<td>10 - 145</td>
<td>13C-PCB-159</td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>95.5</td>
<td>10 - 145</td>
<td>13C-PCB-167</td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>85.2</td>
<td>10 - 145</td>
<td>97.6</td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>102</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>102</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>105</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>108</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>104</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>98.5</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>100</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>99.5</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>98.2</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>72.7</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>99.2</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>97.4</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>99.4</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>97.6</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>93.7</td>
<td>10 - 145</td>
<td>13C-PCB-169</td>
</tr>
</tbody>
</table>

Qualifiers
- EMPC - Estimated maximum possible concentration
- DL - Sample specific estimated detection limit
- LCL-UCL - Lower control limit - upper control limit
- See individual congeners for qualifiers.
Sample Data

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Last Chance Road
- **Date Collected:** 14-Mar-2016 10:50

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600291-04
- **QC Batch:** B6C0129
- **Date Collected:** 14-Mar-2016 10:50
- **Date Analyzed:** 28-Mar-16 00:08
- **Column:** ZB-1
- **Analyst:** ANP

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>21.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td>0.499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>7.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>40.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>74.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>ND</td>
<td>13.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>4.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>ND</td>
<td>3.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>3.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>31.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>44.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>5.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>17.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-22</td>
<td>8.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.95</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>2.25</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>4.44</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-28</td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.579</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>2.36</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>1.80</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>4.01</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>1.54</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>3.37</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

Qualifiers

- **J**

See individual congeners for qualifiers.
Sample ID: GW-158

Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Last Chance Road
- **Date Collected:** 14-Mar-2016 10:50

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600291-04
- **Date Received:** 15-Mar-2016 10:05
- **QC Batch:** B6C0129
- **Date Extracted:** 21-Mar-2016 8:04
- **Date Analyzed:** 28-Mar-16 00:08
- **Column:** ZB-1
- **Analyst:** ANP

Analyte Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.761</td>
<td>0.628</td>
<td></td>
<td>PCB-136</td>
<td>ND</td>
<td>0.408</td>
<td>0.412</td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>ND</td>
<td>0.800</td>
<td></td>
<td></td>
<td>PCB-137</td>
<td>ND</td>
<td>0.412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.752</td>
<td>0.659</td>
<td></td>
<td>PCB-138/163/164</td>
<td>1.11</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.650</td>
<td></td>
<td></td>
<td>PCB-139/149</td>
<td>ND</td>
<td>0.534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>0.660</td>
<td></td>
<td></td>
<td>PCB-140</td>
<td>ND</td>
<td>0.599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.607</td>
<td>0.737</td>
<td></td>
<td>PCB-141</td>
<td>ND</td>
<td>0.419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>0.650</td>
<td></td>
<td></td>
<td>PCB-142</td>
<td>ND</td>
<td>0.426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>ND</td>
<td>0.660</td>
<td></td>
<td></td>
<td>PCB-144</td>
<td>ND</td>
<td>0.544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.607</td>
<td></td>
<td></td>
<td>PCB-145</td>
<td>ND</td>
<td>0.426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.733</td>
<td></td>
<td></td>
<td>PCB-146/165</td>
<td>ND</td>
<td>0.401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.562</td>
<td></td>
<td></td>
<td>PCB-147</td>
<td>ND</td>
<td>0.598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.259</td>
<td></td>
<td></td>
<td>PCB-148</td>
<td>ND</td>
<td>0.569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>ND</td>
<td>0.980</td>
<td></td>
<td>J</td>
<td>PCB-149</td>
<td>ND</td>
<td>0.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.487</td>
<td></td>
<td></td>
<td>PCB-150</td>
<td>ND</td>
<td>0.569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.609</td>
<td></td>
<td></td>
<td>PCB-151</td>
<td>ND</td>
<td>0.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>ND</td>
<td>0.462</td>
<td>0.901</td>
<td></td>
<td>PCB-152</td>
<td>ND</td>
<td>0.363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.566</td>
<td></td>
<td></td>
<td>PCB-153</td>
<td>ND</td>
<td>0.363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-112</td>
<td>ND</td>
<td>0.558</td>
<td></td>
<td></td>
<td>PCB-154</td>
<td>ND</td>
<td>0.523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.566</td>
<td></td>
<td></td>
<td>PCB-155</td>
<td>ND</td>
<td>0.389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.265</td>
<td></td>
<td></td>
<td>PCB-156</td>
<td>ND</td>
<td>0.324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-115</td>
<td>ND</td>
<td>0.456</td>
<td></td>
<td></td>
<td>PCB-157</td>
<td>ND</td>
<td>0.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-116</td>
<td>ND</td>
<td>0.432</td>
<td></td>
<td></td>
<td>PCB-158/160</td>
<td>ND</td>
<td>0.303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-117</td>
<td>ND</td>
<td>0.483</td>
<td></td>
<td></td>
<td>PCB-159</td>
<td>ND</td>
<td>0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-118</td>
<td>ND</td>
<td>0.316</td>
<td></td>
<td></td>
<td>PCB-160</td>
<td>ND</td>
<td>0.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.519</td>
<td></td>
<td></td>
<td>PCB-161</td>
<td>ND</td>
<td>0.332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.499</td>
<td></td>
<td></td>
<td>PCB-162</td>
<td>ND</td>
<td>0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.312</td>
<td></td>
<td></td>
<td>PCB-163</td>
<td>ND</td>
<td>0.404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.322</td>
<td></td>
<td></td>
<td>PCB-164</td>
<td>ND</td>
<td>0.580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.451</td>
<td></td>
<td></td>
<td>PCB-165</td>
<td>ND</td>
<td>0.537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.578</td>
<td></td>
<td></td>
<td>PCB-166</td>
<td>ND</td>
<td>0.578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-125</td>
<td>ND</td>
<td>0.708</td>
<td></td>
<td></td>
<td>PCB-167</td>
<td>ND</td>
<td>0.708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.607</td>
<td></td>
<td></td>
<td>PCB-168</td>
<td>ND</td>
<td>0.580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.580</td>
<td></td>
<td></td>
<td>PCB-169</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.388</td>
<td></td>
<td></td>
<td>PCB-170</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.514</td>
<td></td>
<td></td>
<td>PCB-171</td>
<td>ND</td>
<td>0.617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.478</td>
<td></td>
<td></td>
<td>PCB-172</td>
<td>ND</td>
<td>0.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.467</td>
<td></td>
<td></td>
<td>PCB-173</td>
<td>ND</td>
<td>0.436</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:
- DL: Sample specific estimated detection limit
- EMPC: Estimated maximum possible concentration
- LCL-UCL: Lower control limit - upper control limit
- See individual congeners for qualifiers.
Sample Data
- **Sample ID:** GW-158
- **Client Data:** Walla Walla Basin Watershed Council
 - **Name:** Last Chance Road
 - **Date Collected:** 14-Mar-2016 10:50
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600291-04
- **QC Batch:** B6C0129
- **Sample Received:** 15-Mar-2016 10:05
- **Sample Extracted:** 21-Mar-2016 8:04
- **Date Analyzed:** 28-Mar-2016 00:08
- **Column:** ZB-1
- **Analyst:** ANP

Analyte Concentrations (pg/L)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentration (pg/L)</th>
<th>Estimated Maximum Possible Concentration (EMPC)</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.540</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.539</td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.534</td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.496</td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.454</td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.557</td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.417</td>
<td></td>
</tr>
<tr>
<td>PCB-187</td>
<td>ND</td>
<td>0.399</td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.395</td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.431</td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.420</td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.450</td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.422</td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.271</td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.307</td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.645</td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>0.458</td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.709</td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>0.721</td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>0.488</td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.517</td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.524</td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.498</td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>0.217</td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.366</td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.235</td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.239</td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.300</td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.300</td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td>ND</td>
<td>0.300</td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>29.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>132</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>40.1</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>0.980</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.708</td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Last Chance Road
- **Date Collected:** 14-Mar-2016 10:50

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.02 L

Laboratory Data
- **Lab Sample:** 1600291-04
- **Date Received:** 15-Mar-2016 10:05
- **QC Batch:** B6C0129
- **Date Extracted:** 21-Mar-2016 8:04
- **Date Analyzed:** 28-Mar-16 00:08
- **Column:** ZB-1
- **Analyst:** ANP

Sample Data

<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-PCB-1</td>
<td>82.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>83.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>91.4</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>90.8</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>88.3</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>71.1</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>86.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>73.9</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>110</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>87.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>89.0</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>75.7</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>99.2</td>
<td>5 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>99.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>102</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>97.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>105</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>82.7</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>101</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>104</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>107</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>106</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>99.8</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>75.1</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>98.6</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>98.4</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>103</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>99.9</td>
<td>10 - 145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>97.2</td>
<td>10 - 145</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- **EMPC:** Estimated maximum possible concentration
- **DL:** Sample specific estimated detection limit
- **LCL-UCL:** Lower control limit - upper control limit
- See individual congeners for qualifiers.
Client Data
- **Name:** Walla Walla Basin Watershed Council
- **Project:** Last Chance Road
- **Date Collected:** 14-Mar-2016 12:25

Sample Data
- **Matrix:** Aqueous
- **Sample Size:** 1.01 L

Laboratory Data
- **Lab Sample:** 1600291-05
- **Date Received:** 15-Mar-2016 10:05
- **QC Batch:** B6C0129
- **Date Extracted:** 21-Mar-2016 8:04
- **Date Analyzed:** 28-Mar-16 01:13
- **Column:** ZB-1
- **Analyst:** ANP

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1</td>
<td>20.4</td>
<td>0.488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-2</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-3</td>
<td>7.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-4/10</td>
<td>36.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-5/8</td>
<td>72.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-6</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-7/9</td>
<td>ND</td>
<td>3.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-11</td>
<td>ND</td>
<td>3.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-12/13</td>
<td>ND</td>
<td>3.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-14</td>
<td>ND</td>
<td>2.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-15</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-16/32</td>
<td>23.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-17</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-18</td>
<td>36.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-19</td>
<td>5.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-20/21/33</td>
<td>13.7</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-22</td>
<td>7.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-23</td>
<td>ND</td>
<td>0.297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-24/27</td>
<td>2.69</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-25</td>
<td>1.80</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-26</td>
<td>3.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-28</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-29</td>
<td>ND</td>
<td>0.297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-30</td>
<td>ND</td>
<td>0.367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-31</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-34</td>
<td>ND</td>
<td>0.276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-35</td>
<td>ND</td>
<td>0.279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-36</td>
<td>ND</td>
<td>0.269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-37</td>
<td>1.34</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-38</td>
<td>ND</td>
<td>0.282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-39</td>
<td>ND</td>
<td>0.278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-40</td>
<td>0.976</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-41/64/71/72</td>
<td>2.86</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-42/59</td>
<td>1.11</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-43/49</td>
<td>2.50</td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

Analyte Conc. (pg/L) Qualifiers

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-44</td>
<td>3.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-45</td>
<td>ND</td>
<td>0.761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-46</td>
<td>ND</td>
<td>0.391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-47</td>
<td>4.53</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-48/75</td>
<td>1.13</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-50</td>
<td>ND</td>
<td>0.352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-51</td>
<td>1.12</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-52/69</td>
<td>3.25</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-53</td>
<td>1.01</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-54</td>
<td>ND</td>
<td>0.267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>ND</td>
<td>0.208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56/60</td>
<td>1.56</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-57</td>
<td>ND</td>
<td>0.225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>ND</td>
<td>0.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70</td>
<td>1.83</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-62</td>
<td>ND</td>
<td>0.261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>ND</td>
<td>0.216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-65</td>
<td>ND</td>
<td>0.269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66/76</td>
<td>1.44</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-67</td>
<td>ND</td>
<td>0.231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>0.898</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-73</td>
<td>ND</td>
<td>0.263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-74</td>
<td>0.890</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-76</td>
<td>ND</td>
<td>0.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>ND</td>
<td>0.216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>ND</td>
<td>0.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>ND</td>
<td>0.193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>ND</td>
<td>0.197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>ND</td>
<td>0.543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>ND</td>
<td>0.318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84/92</td>
<td>ND</td>
<td>0.447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116</td>
<td>ND</td>
<td>0.379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86</td>
<td>ND</td>
<td>0.511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-87/117/125</td>
<td>ND</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>0.332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>ND</td>
<td>0.478</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-89</td>
<td>ND</td>
<td>0.481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101</td>
<td>1.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93</td>
<td>ND</td>
<td>0.505</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-94</td>
<td>ND</td>
<td>0.475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95/98/102</td>
<td>ND</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>ND</td>
<td>0.405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-97</td>
<td>ND</td>
<td>0.407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>0.739</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-100</td>
<td>ND</td>
<td>0.459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>ND</td>
<td>0.457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>ND</td>
<td>0.350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>ND</td>
<td>0.199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106/118</td>
<td>1.06</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-107/109</td>
<td>ND</td>
<td>0.302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/112</td>
<td>ND</td>
<td>0.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110</td>
<td>1.13</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>PCB-111/115</td>
<td>ND</td>
<td>0.284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-113</td>
<td>ND</td>
<td>0.357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>ND</td>
<td>0.201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-119</td>
<td>ND</td>
<td>0.281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>ND</td>
<td>0.266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>ND</td>
<td>0.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>ND</td>
<td>0.239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>ND</td>
<td>0.322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-124</td>
<td>ND</td>
<td>0.309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>ND</td>
<td>0.253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>ND</td>
<td>0.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/162</td>
<td>ND</td>
<td>0.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129</td>
<td>ND</td>
<td>0.344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>ND</td>
<td>0.377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>ND</td>
<td>0.367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132/161</td>
<td>ND</td>
<td>0.278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133/142</td>
<td>ND</td>
<td>0.341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134/143</td>
<td>ND</td>
<td>0.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135</td>
<td>ND</td>
<td>0.515</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration

DL - Sample specific estimated detection limit

LCL-UCL - Lower control limit - upper control limit

See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. (pg/L)</th>
<th>DL</th>
<th>EMPC</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-180</td>
<td>ND</td>
<td>0.376</td>
<td>0.436</td>
<td></td>
</tr>
<tr>
<td>PCB-181</td>
<td>ND</td>
<td>0.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-182/187</td>
<td>ND</td>
<td>0.360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-183</td>
<td>ND</td>
<td>0.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-184</td>
<td>ND</td>
<td>0.306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-185</td>
<td>ND</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-186</td>
<td>ND</td>
<td>0.281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-188</td>
<td>ND</td>
<td>0.269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-189</td>
<td>ND</td>
<td>0.280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-190</td>
<td>ND</td>
<td>0.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-191</td>
<td>ND</td>
<td>0.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-192</td>
<td>ND</td>
<td>0.313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-193</td>
<td>ND</td>
<td>0.294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-194</td>
<td>ND</td>
<td>0.294</td>
<td>0.436</td>
<td></td>
</tr>
<tr>
<td>PCB-195</td>
<td>ND</td>
<td>0.298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-196/203</td>
<td>ND</td>
<td>0.570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-197</td>
<td>ND</td>
<td>0.405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-198</td>
<td>ND</td>
<td>0.627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-199</td>
<td>ND</td>
<td>0.638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-200</td>
<td>ND</td>
<td>0.457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-201</td>
<td>ND</td>
<td>0.431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-202</td>
<td>ND</td>
<td>0.464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-203</td>
<td>ND</td>
<td>0.440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-204</td>
<td>ND</td>
<td>0.211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-205</td>
<td>ND</td>
<td>0.287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-206</td>
<td>ND</td>
<td>0.181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-207</td>
<td>ND</td>
<td>0.183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-208</td>
<td>ND</td>
<td>0.542</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-209</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total monoCB</td>
<td>27.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total diCB</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total triCB</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total tetraCB</td>
<td>28.8</td>
<td>29.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pentaCB</td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hexaCB</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total heptaCB</td>
<td>ND</td>
<td>0.493</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPC - Estimated maximum possible concentration
DL - Sample specific estimated detection limit
LCL-UCL - Lower control limit - upper control limit
See individual congeners for qualifiers.
<table>
<thead>
<tr>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
<th>Labeled Standard</th>
<th>%R</th>
<th>LCL-UCL</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 13C-PCB-1</td>
<td>76.8</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-170</td>
<td>84.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-3</td>
<td>77.6</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-180</td>
<td>84.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-4</td>
<td>88.7</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-188</td>
<td>84.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-11</td>
<td>91.3</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-189</td>
<td>81.2</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-9</td>
<td>86.2</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-194</td>
<td>102</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-19</td>
<td>72.2</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-202</td>
<td>69.7</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-28</td>
<td>76.7</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-206</td>
<td>107</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-32</td>
<td>74.0</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-208</td>
<td>94.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-37</td>
<td>98.6</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-209</td>
<td>99.8</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-47</td>
<td>80.7</td>
<td>5-145</td>
<td></td>
<td>CRS 13C-PCB-79</td>
<td>99.1</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-52</td>
<td>84.2</td>
<td>5-145</td>
<td></td>
<td>13C-PCB-178</td>
<td>93.4</td>
<td>10-145</td>
<td></td>
</tr>
<tr>
<td>13C-PCB-54</td>
<td>74.3</td>
<td>5-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-70</td>
<td>90.6</td>
<td>5-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-77</td>
<td>94.6</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-80</td>
<td>90.8</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-81</td>
<td>95.0</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-95</td>
<td>96.3</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-97</td>
<td>104</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-101</td>
<td>97.7</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-104</td>
<td>81.6</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-105</td>
<td>105</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-114</td>
<td>109</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-118</td>
<td>105</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-123</td>
<td>105</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-126</td>
<td>104</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-127</td>
<td>100</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-138</td>
<td>103</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-141</td>
<td>108</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-153</td>
<td>102</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-155</td>
<td>68.7</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-156</td>
<td>98.4</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-157</td>
<td>97.0</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-159</td>
<td>103</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-167</td>
<td>101</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C-PCB-169</td>
<td>96.5</td>
<td>10-145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- **EMPC** - Estimated maximum possible concentration
- **DL** - Sample specific estimated detection limit
- **LCL-UCL** - Lower control limit - upper control limit
- See individual congeners for qualifiers.
DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.
CERTIFICATIONS

<table>
<thead>
<tr>
<th>Accrediting Authority</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Department of Health – ELAP</td>
<td>2892</td>
</tr>
<tr>
<td>DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005</td>
<td>3091.01</td>
</tr>
<tr>
<td>Florida Department of Health</td>
<td>E87777</td>
</tr>
<tr>
<td>Hawaii Department of Health</td>
<td>N/A</td>
</tr>
<tr>
<td>Louisiana Department of Environmental Quality</td>
<td>01977</td>
</tr>
<tr>
<td>Maine Department of Health</td>
<td>2014022</td>
</tr>
<tr>
<td>Nevada Division of Environmental Protection</td>
<td>CA004132015-1</td>
</tr>
<tr>
<td>New Jersey Department of Environmental Protection</td>
<td>CA003</td>
</tr>
<tr>
<td>New York Department of Health</td>
<td>11411</td>
</tr>
<tr>
<td>Oregon Laboratory Accreditation Program</td>
<td>4042-004</td>
</tr>
<tr>
<td>Pennsylvania Department of Environmental Protection</td>
<td>012</td>
</tr>
<tr>
<td>South Carolina Department of Health</td>
<td>87002001</td>
</tr>
<tr>
<td>Texas Commission on Environmental Quality</td>
<td>T104704189-15-6</td>
</tr>
<tr>
<td>Virginia Department of General Services</td>
<td>7923</td>
</tr>
<tr>
<td>Washington Department of Ecology</td>
<td>C584</td>
</tr>
<tr>
<td>Wisconsin Department of Natural Resources</td>
<td>998036160</td>
</tr>
</tbody>
</table>

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.
NELAP Accredited Test Methods

Matrix: Air

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Polychlorinated p-Dioxins & Polychlorinated Dibenzofurans</td>
<td>EPA 23</td>
</tr>
</tbody>
</table>

Matrix: Biological Tissue

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>

Matrix: Drinking Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
</tbody>
</table>

Matrix: Non-Potable Water

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS</td>
<td>EPA 1699</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Dioxin by GC/HRMS</td>
<td>EPA 613</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>

Matrix: Solids

<table>
<thead>
<tr>
<th>Description of Test</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS</td>
<td>EPA 1613</td>
</tr>
<tr>
<td>Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope</td>
<td>EPA 1613B</td>
</tr>
<tr>
<td>Dilution GC/HRMS</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Brominated Diphenyl Ethers by HRGC/HRMS</td>
<td>EPA 1614A</td>
</tr>
<tr>
<td>Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS</td>
<td>EPA 1668A/C</td>
</tr>
<tr>
<td>Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS</td>
<td>EPA 537</td>
</tr>
<tr>
<td>Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS</td>
<td>EPA 8280A/B</td>
</tr>
<tr>
<td>Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS</td>
<td>EPA 8290/8290A</td>
</tr>
</tbody>
</table>
CHAIN OF CUSTODY

Project I.D.: LAST CHANCE ROAD
P.O.#:
Sampler: STEVEN PATTEN

Invoice to: CHEPS STREET
Company: LWRC
Address: 510 S. MAIN ST
City: MALTOS-RECEIVED CA
State: OR
Zip: 97342
Ph#: 541-938-2170
Fax#:

Relinquished by: STEVEN PATTEN
Date: 3/14/16
Time: 1:45p.m.
Received by: B. B.
Date: 3/15/16
Time: 10:05a.m.

Relinquished by: UPS
Date: 03/15/16
Time: 01:07p.m.

See "Sample Log-in Checklist" for additional sample information.

SHIP TO: Vista Analytical Laboratory
1104 Windfield Way
El Dorado Hills, CA 95762
(916) 673-1520 • Fax (916) 673-0106

ATTN:

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Location/Sample Description</th>
<th>Add Analysis(es) Requested</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTRAKE</td>
<td>3/14/16</td>
<td>11:15</td>
<td>LCR</td>
<td>2L A AQ</td>
</tr>
<tr>
<td>GW-148</td>
<td>3/14/16</td>
<td>11:05</td>
<td>LCR</td>
<td>2L A AQ</td>
</tr>
<tr>
<td>GW-149</td>
<td>3/14/16</td>
<td>13:10</td>
<td>LCR</td>
<td>2L A AQ</td>
</tr>
<tr>
<td>GW-158</td>
<td>3/14/16</td>
<td>10:50</td>
<td>LCR</td>
<td>2L A AQ</td>
</tr>
<tr>
<td>GW-159</td>
<td>3/14/16</td>
<td>12:25</td>
<td>LCR</td>
<td>2L A AQ</td>
</tr>
</tbody>
</table>

Special Instructions/Comments:

SEND DOCUMENTATION AND RESULTS TO:

Name: STEVEN PATTEN
Company: LWRC
Address: 510 S. MAIN ST
City: MALTOS-RECEIVED CA
State: OR
Zip: 97342
Phone: 541-938-2170
Fax: SAME
Email: steven@lwrccom

Matrix Types:
- DW = Drinking Water
- EF = Effluent
- PP = Pulp/Paper
- SD = Sediment
- SL = Sludge
- SO = Soil
- WW = Wastewater
- B = Blood/Serum
- AQ = Aqueous

Container Types:
- A = 1 Liter Amber
- G = Glass Jar

Preservative Type:
- T = Thiosulfate
- O = Other

Work Order 1600291
WHITE - ORIGINAL
YELLOW - ARCHIVE
PINK - COPY
Page 36 of 37
SAMPLE LOG-IN CHECKLIST

<table>
<thead>
<tr>
<th>Samples Arrival:</th>
<th>Date/Time</th>
<th>Initials:</th>
<th>Location:</th>
<th>Shelf/Rack:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03/15/16 1005</td>
<td>BBB</td>
<td>WR-3</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logged In:</th>
<th>Date/Time</th>
<th>Initials:</th>
<th>Location:</th>
<th>Shelf/Rack:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03/15/16 1408</td>
<td>FBB</td>
<td>WR-5</td>
<td>A4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delivered By:</th>
<th>FedEx</th>
<th>UPS</th>
<th>On Trac</th>
<th>DHL</th>
<th>Hand Delivered</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservation:</td>
<td>Ice</td>
<td>Blue Ice</td>
<td>Dry Ice</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp °C:</th>
<th>(uncorrected)</th>
<th>Time:</th>
<th>Thermometer ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.4</td>
<td>1008</td>
<td>IR-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adequate Sample Volume Received?</th>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding Time Acceptable?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Container(s) Intact?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Custody Seals Intact?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Documentation Present?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airbill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Container Intact?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Custody Seals Intact?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of Custody / Sample Documentation Present?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC Anomaly/Sample Acceptance Form completed?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If Chlorinated or Drinking Water Samples, Acceptable Preservation?</th>
<th>YES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Na₂S₂O₃ Preservation Documented?</th>
<th>COC</th>
<th>Sample Container</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shipping Container</th>
<th>Vista</th>
<th>Client</th>
<th>Retain</th>
<th>Return</th>
<th>Dispose</th>
</tr>
</thead>
</table>

Comments:
APPENDIX C - WALLA WALLA BASIN AQUIFER RECHARGE WATER QUALITY AND WATER LEVEL MONITORING QUALITY ASSURANCE PROJECT PLAN

Click here to download the WWBWC's QAPP

www.wwbwc.org/images/Projects/AR/Reports/QAPP_1.3_WA.pdf